

| Anaerobic Digestion Process

Features

- Anaerobic digestion process consists of anaerobic digester (AD), nitrogen control reactor (NCR), and biogas holder. In case of higher digestibility is required, pre-treatment equipment such as cavitation generation device is added prior to AD.
- Stable and steady anaerobic digestion performance is possible by controlling influent organic loading which can prevent AD failure due to shock organic loading.
- Installation of NCR is helpful in preventing ammonia inhibition in AD and reducing nitrogen loading in post-treatment.
- Biogas from AD can be used for electricity generation and/or AD heating.

Applications

- Organic wastes such as sewage sludge, food waste, animal manure etc.
- Agro-wastes such as bagasse, molasses, palm oil mill effluent (POME) etc.

Advantages

- Maintains balanced and constant operation by managing influent flow rate
- Minimizes the ammonia inhibition by NCR
- Creates biogas, a renewable source of energy that can be used to natural gas
- Prevents methane emission into atmosphere, a greenhouse gas with a global warming potential
- Reduces post-treatment loads by high digestion efficiency and low nitrogen content
- Produces much less biomass than aerobic processes
- Sludge is more easily dewatered

| Pre-treatment types

Option I. Cavitation

- This method is to utilize cavitation generated by ultrasonic or hydrodynamically, which disrupts microbial cells.
- Cavitation enhances anaerobic biodegradability of various organic materials in AD.
- Easy to install and maintain equipments
- Easy to construct, expand, and replace
- · Effective auto operation by flow-rate control

Option II. Cyclone

- This method is to separate organic matters and inorganic matters using difference of specific gravity.
- It is suitable for pre-treatment of sludge generated from combined sewerage and drainage system having low VS/TS ratio.
- · Low energy consumption
- · Low operating and maintenance costs
- No chemical requirements

CAVITATION BUBBLE GENERATION AND IMPLOSION

CAVITATION GENERATION DEVICE

CYCLONE SCHEMATICS

B-816, 401, Yangcheon-ro, Gangseo-gu, Seoul, Korea

Tel: +82 2 3453 6114 Fax: +82 2 6968 5853

| Water Treatment System - Electro-Chemical Separator

Electro-Chemical Separator (ECS)

Features

- This technology is able to provide stable and sustainable water. It is possible to respond with various water quality requirements and water amount demands.
- The ECS system consists of a cation exchange membrane (CEM) and an anion exchange membrane (AEM) between an anode and a cathode
- The ECS system can be able to remove of various pollutants in water and wastewater including ionic pollutants, biological pollutants, and heavy metals.

Advantages

- The ECS advantages are as follows.
 - can be applied to water, wastewater, and groundwater treatment
 - maintenance friendly
 - small footprint
 - low energy consumption
 - low capital and operating costs
 - no disinfection system requirements
 - low wastewater production compared to ion exchange resins

Applications

- Water treatment for drinking water production
- Production of ultra pure water
- Groundwater treatment: Nitrate, arsenic, fluoride, heavy metals removal, Hardness & salts reduction, Pathogenic bacteria disinfection
- Wastewater treatment/reuse
- · Desalination of sludge
- · Demineralization of food products
- Recovering valuable materials such as heavy metals

B-816, 401, Yangcheon-ro, Gangseo-gu, Seoul, Korea

Tel: +82 2 3453 6114 Fax: +82 2 6968 5853

| Water Treatment System - Adsorption/Oxidation Filter

Ammonium Adsorption Filter + Iron/Manganese Contact Oxidation Filter

Features

- This technology is able to provide stable and sustainable water by conducting simultaneously physical adsorption and filtration.
- Zeolite with selective ion exchange ability can remove ammonium ion in the water, and insoluble oxidized metals are filtered by special packing materials.
- Can be applied to various ionized pollutants removal such as ammonium, iron, and manganese in water and groundwater.
- · High water quality effluent
 - ammonium < 0.5 mg/L
 - iron / manganese < 0.3 mg/L

Applications

- Water and groundwater treatment for drinking water production
- Wastewater reuse
- Industry wastewater treatment such as cooling water, dying wastewater

Advantages

- · Cost-effective system
- low energy consumption
- low capital and operating costs
- semi-permanent filter media
- Small footprint through compact design
- · Easy to install and respond
- Maintenance friendly
- · No additional chemical requirements

B-816, 401, Yangcheon-ro, Gangseo-gu, Seoul, Korea

Tel: +82 2 3453 6114 Fax: +82 2 6968 5853

| Recalcitrant Wastewater Treatment

Electro-Flotation (ECOLYZER®-EF)

- Oil and suspended solids removal by 10μm micro-bubbles
- Excellent water quality
- Low power and chemical costs
- Low scum production, low scum water content
- Additional effects; decoloration, COD & BOD removal

Electrochemical Oxidation (ECOLYZER®-ED)

- Effective treatment for non-biodegradable / high toxic wastewater
- Effective treatment for sea water / wastewater with high chlorine content
- No effects on high (>40°C) and low (<15°C) temperature
- Energy saving by using selective electrodes depending on target substances

Electro-Winning (ECOLYZER®-EW)

- Wiper skims metals extracted on rotating cathode
- Effective treatment for wastewater with heavy metals (iron, cupper, lead etc.)
- Effective treatment for wastewater with high hardness (calcium, magnesium etc.)
- Recovery and Reuse of extracted metals

B-816, 401, Yangcheon-ro, Gangseo-gu, Seoul, Korea

Tel: +82 2 3453 6114 Fax: +82 2 6968 5853

Process Utilities

Applications

B-816, 401, Yangcheon-ro, Gangseo-gu, Seoul, Korea

Tel: +82 2 3453 6114 Fax: +82 2 6968 5853

| Electrokinetic Sludge Dewatering Technology

Features

- This technology offers separation, dewatering and drying solution and equipment in sludge treatment process.
- It is helpful to reduce the production of the sludge, reduce the environmental impacts and substantially improve drying efficiency for recycling of the sludge or producing bio-energy from municipal and industrial sludge.

Advantages

- Long and reliable working life demanding minimal operational and maintenance costs
- Easy to integrate with existing dewatering systems or operated as an independent dewatering system
- Not only save the operation and disposal cost but also offer the most effective way of sludge into energy

Principle of the Electrokinetic Dewatering

- This distribution takes the following forms;
- (a) free water that is not attached to the sludge particles and can be removed by gravitational settling.
- (b) interstitial water that is trapped within the flocs of solids or exists in the capillaries of the dewatered cake and can be removed by strong mechanical forces
- (c) surface water that is held on the surface of the solid particles by adsorption and adhesion and
- (d) intracellular and chemically bound water
- The electrokinetic dewatering can achieve 35-40% of dry solid by taking out the free water, interstitial water, surface water and part of intracellular and chemically bound water, whereas the conventional dewatering can achieve only 20-25% dry solid by taking out only free water.

B-816, 401, Yangcheon-ro, Gangseo-gu, Seoul, Korea

Tel: +82 2 3453 6114 Fax: +82 2 6968 5853

Mechanism and Process of the Electrokinetic Movement

Preliminary mechanical pressure

1. Electrophoresis

2 & 3 Electro-osmosis and 4. Rupture of capillary pressure cell membrane

- Preliminary Mechanical Pressure
- 1st phase. Electrophoresis
 Negative-charged sludge particles are forced to move toward positive-charged anode by the difference of the electric potentials
- 2nd phase. Electro-Osmosis
 The positive-charged free water particles are forced to move toward the negative-charged cathode by the difference of electric-potentials.
- 3rd phase. Electro-Osmosis, Capillary Pressure
 Adsorbed water particles percolate through sludge particles and move toward the cathode
- 4th phase. Rupture of cell membrane
 By the rupture of the cell membranes in the sludge, the absorbed water becomes free.

Standard Specification

Model	E700	E1000	E1500	E2000
Throughput (MT/H)	0.5 – 0.7	0.8 – 1.0	1.0 – 1.4	1.6 – 2.0
Inlet sludge DS	15 – 20 %			
Discharged sludge DS	35 ± 3 %			
Energy consumption	140 kw per 1 Mt of sludge			
Dimension (M)	2.5(W)*3.5(L)*1.5(H)	3.2(W)*3.5(L)*1.5(H)	2.5(W)*3.5(L)*2.2(H)	3.2(W)*3.5(L)*2.2(H)

B-816, 401, Yangcheon-ro, Gangseo-gu, Seoul, Korea

Tel: +82 2 3453 6114 Fax: +82 2 6968 5853

| Scale-Buster

- · Prevent creation of slime, scale, rust
- Remove slime and scale
- Soften water

- Prevent rust
- Convert rust into magnetite
- Prevent water leakage
- Prolong pipe lifetime

Scale-Buster Schematic Diagram

Features

- Scale Buster is a water treatment device/system to prevent and remove slime, rust and scale in the water pipe without additional chemicals or external electricity.
 - External : Brass
 - Internal : Special Zinc, PTFE

Advantages

- Prolongs the lifetime of water pipe by removing the scale and converting the structure of rust to magnetite.
- Saves the cost by over 85% compared to replacement of water pipe.
- No inconvenience occurs to resident's life because it is installed on existing water pipe.
- Minimized inconvenience for residents due to short installation time (can be finished in 4-5 hours).
- Lifetime of Scale Buster lasts out 20 years, and 20 years later you only need to replace Zinc in the Scale Buster to extend the lifespan.
- Accordingly, it can prolong the lifetime of water pipe and buildings.
- Makes more softened water and good for skin trouble treatment.

B-816, 401, Yangcheon-ro, Gangseo-gu, Seoul, Korea

Tel: +82 2 3453 6114 Fax: +82 2 6968 5853

Scale-Buster Installation Effects

Before (Oct. 2011) 40% of pipe was clogged by scale and rust

After 17 month (Mar. 2013) 90% of scale was removed

Applications

B-816, 401, Yangcheon-ro, Gangseo-gu, Seoul, Korea

Tel: +82 2 3453 6114 Fax: +82 2 6968 5853

| Remediation Technology for Contaminated Soil

Ball-Mill and Bubble Size Adjustable Flotation for Remediation of Heavy Metal Contaminated Soil

Principle

- Attrition(Surface Grinding)
 - Technology for heavy metal contaminated soil, which has developed from traditional mineral dressing technology
 - Easy separation of heavy metal from contaminated soil without using chemical agents (no acids/bases are needed)

- Contaminant (Heavy Metal) selective separation technology using bubble size adjustable flotation
- Reduce by-products and wastes

Applications

Janghang Refinery Site
(Seocheon, South Korea)

B-816, 401, Yangcheon-ro, Gangseo-gu, Seoul, Korea

Tel: +82 2 3453 6114 Fax: +82 2 6968 5853