

Implementation of Pilot Project to Improve Environmental Conditions in Estero de Paco

Javier Coloma Brotons April 2015

Pilot Project Location

Construction

Collector box

constructed wetland: gravel layer and outfall

Finished Units

constructed wetland

Wastewater treatment pilot

 Reduce the pollutants reaching the Estero, rather than treating the water within it

• Main Goal: Show the way to improve water quality.

Pilot Project Components & Design Features

Condominial Sewerage System (CSS)

low cost sewage conveyance thru shallow collector pipes/boxes

Anaerobic Baffled Reactor (ABR)

Size: 9 m (length) x 2 m (width) x 2.5 m (depth) Retention time = 1.5 days

Constructed Wetland (CW)

Size:19 m (length) x 2 m (width) x 1 m (water depth)

Retention time = 2 to 3 days

Anaerobic Baffled Reactor (ABR)

- Improved septic tank with a series of baffles
- Better anaerobic degradation of suspended and dissolved organic pollutants
- ABR increases contact between biomass and wastewater

Reported Efficiency of ABR

Parameters	Removal (%)				
Chemical Oxygen Demand	65-90				
Biological Oxygen Demand	70-95				
Total Suspended Solid	80-90				
Pathogen	Low pathogen reduction				

Reference: Sustainable sanitation and water management. Retrieved 18 September 2014 at http://www.sswm.info/category/implementation-tools/wastewater-treatment/hardware/semi-centralised-wastewater-treatments-8

Quality of effluent influenced by: HRT

- Amount of time that the wastewater is in contact with the biomass or HRT (pilot project ~ 1.0 to 1.5 days)
- Typical HRT = 1 day but may be extended to 2 to 2.5 hours during start-up

$$HRT = \frac{V}{Q}$$

Where: Q is volumetric flow rate and V is the volume of the reactor

Quality of effluent influenced by: sludge concentration

- Amount biomass and bio-solids settling in the compartment (SRT)
 - at least 30% of the tank volume
 - Pilot has now Imhoff reading of 30 to 40% (Sep 2014)
- ABR will not operate at full capacity after installation, because anaerobic digestion of sludge needs a 3-month start up.

Post Treatment: Constructed Wetlands

- Subsurface Flow
- No accumulation of water
- Better removal of organic as post-treatment
- Removal of pathogens

Latest pictures (as of September 8, 2014):

Wetland Plants (~ 1meter tall)

Flexible hose outlet for leak repair

Sampling Port (outlet)

Samples collected last Aug 28

Assessment of Performance (ABR & wetlands)

Pollutant Parameter	Month 1	Target	Target				
	(actual)	Month 2-4	Month 5-7				
BOD (mg/l)	48% reduction	60% reduction	90% reduction				
	Influent – 145	Influent – 145	Influent – 145				
	Effluent – 75	Effluent – 58	Effluent – 15				
	Standard for Class C – 50 mg/l						
Coliform (MPN)	1 log reduction	2 log reduction	2 log reduction				
	Influent – 10 ⁸	Influent – 10 ⁸	Influent – 10 ⁸				
	Effluent – 10 ⁷	Effluent – 10 ⁶	Effluent – 10 ⁶				
	Standard for Class C – 10 ⁴ (Additional disinfection may be required)						

ABR+CW Performance Monitoring

PARAMETERS	ABR Influent				ABR Effluent			CW Effluent				Class C Effluent Standards	
	Aug 29	Sep 22	Oct 15	No v 24	Aug 29	Sep 22	Oct 15	Nov 24	Aug 29	Sep 22	Oct 15	No v 24	
BOD (mg/L)	145	158	279	107	149	58	62	78	75	29	36	27	50
TSS (mg/L	242.5	NA	185	230	82.5	NA	21.0	25	17.5	NA	9.0	36	70
рH	6.70	NA	7.0	6.6	6.90	NA	7.10	6.7	7.20	NA	7.40	7.0	6.5 – 9.0
Oil and Grease (mg/L)	16.0	NA	17.0	12	7.5	NA	6.5	8.5	4.0	NA	0.8	4.5	5.0
Total Coliform (MPN/100 ml)	1.7 x 10 ⁸	1.1 x 10 ⁸	4.9 x 10 ⁷	4.9 x 10 ⁷	2.2 x 10 ⁸	2.3 x 10 ⁷	4.6 x 10 ⁵	3.3 x 10 ⁶	2.8 x 10 ⁸	7.9 x 10 ⁶	4.9 x 10 ⁵	2.3 x 10 ⁷	10,000

Monitoring October 2015

(3 month after start of commissioning)

Conclusions

- Small bore sewers need maintenance.
- Fat traps are the best option.
- ABRs work better with high organic load.
- Sludge needs to be emptied every 2 years.
- CWs can reduce pathogens to Class C.
- Reed needs to be cut every 4-6 months.
- CSS with ABR+CWE in Philippines costs \$120/person

