Challenges and Opportunities for Public-Private Partnerships (PPP) & Support for Environmental Management of Iraq Marshlands – UNEP Iraqi Marshland Project

1st IWA-ASPIRE Conference, 10-15 July 2005, Singapore

Dr. Mushtaq Ahmed Memon (mushtaq.memon@unep.or.jp) United Nations Environment Programme Division of Technology, Industry and Economics

Presentation Outline

Reasons for Public-Private Partnerships

- What are the challenges and the priorities?

UNEP project for Iraqi Marshlands

- What activities are planned and implemented?

Water Utilities in Asia - I

	Productio	Coverage	Water	C onsum pt	UFW (%)	Average	WaterBill	Power/wa	Metering	Operating	Staff/100	New	Private
	n/Populati	(?)	Availability	ion (//c/d)	orNRW	Tariff	(US\$/mon	terbill		ratio	0	connectio	sector
	on		(hours)		(%)	(US\$/mon	th)	ratio			connectio	n (US\$)	participati
	(m ³ /d/c)					th)					n ration		on
A ln aty	0.72	99	24	186	13	0.06	1	15	54	0.37	139	66	
Apia	0.67	100	24	337	50	0 D 5	14	2.6	3	7.73	15.8	28	
Bandung	90 0	42	6	120	51	0.37	8	15	100	096	7,7	78	Meter/ Leaks
Bangkok	0.53	82	24	265	38	0.31	10	3.6	100	089	4.6	283	Production
Beijing	034	100	24	96	8	0۵5	1	61	100	13	27.2	100	
Bishkek	66.0	98	24	112	47	0۵5	1	2.7	1	089	69	115	Rehabilit
Calcutta	026	66	10	202	50	0 D1	5	12	0	525	171	40	
Cebu	8Q 0	23	18	173	38	66.0	15	15	100	0 55	93	80	Source/ Pipe
Chenai	007	97	4		20	025	3	65	1	094	259	41	Pumping
Chiangmai	024	65	20	135	38	03	5	3.7	100	0.49	29	83	Production
C hittagong	014	60	15	139	35	012	9	22	100	056	27.7	69	
Chonburi	036	89	16	145	37	0.46	7	3.7	100	034	2.6	83	Production / Other
Columbo	018	58	22	165	51	014	1	88	94	0.53	73	92	Proposed
Davao	013	52	24	145	31	027	7	2.4	100	0.83	62	42	B&C
Dehi	024	86	4	209	44	0.03	2	7,7	73	1.48	21.4	15	
Dhaka	90 0	42	17	95	51	0.09	11	3.4	74	101	185	29	B&C
Faisalabad	0.09	60	7	170	78	0.03	1	18,5	5	1.41	25	34	

Source: ADB 1997

Water Utilities in Asia - II

	Productio n/Populati on m ³ (d/a)	Coverage (%)	Water Availability (hours)	Consumpt ion (/c/d)	UFW (%) orNRW (%)	Average Tariff (US\$/mon th)	WaterBill (US\$/mon th)	Power/wa terbill ratio	Metering	0 perating ratio	Staff/100 0 connectio	New connectio n (US\$)	Private sector participati
Hanoi	0.22	76	18	45	71	0.11	1	5	25	0.79	133	76	
Ho Chi Minh	015	52	24	136	34	013	6	31	100	0.96	6.4	45	Production
Hong Kong	0.4	100	24	112	36	0.56	31	12	100	1.63	28	147	
Honiara	0.58	100	23	251	38	015	12	18	100	126	10.7	95	Prod/Mngt
Jakarta	011	27	18	135	53	0.61	18	1	100	0.98	59	10	B&C
Johor Bahru	0.37	100	24	193	21	039	7	21	100	0.61	12	50	Prod
Karachi	014	70	4	157	40	009	5	12.7	1	0.77	8.4	2	Future
Kathm and u	011	81	6	91	40	014	2	78	83	0.72	15	49	Mangt / Distr
Kuala Lum pur	0.35	100	24	200	36	034	14	2	100	a 0	11	4	Prod / B&C
Lae	0.38	62	24	146	61	0.64	52	13	100	0.39	171	72	
Lahore	0.33	84	17	213	40	02	6	49	24	0.71	5.7	7	
Male	0 03	100	24	16	10	4086	25	33	100	a 0	7.6		Concess
M andalay	014	80	24	110	60	12	51	1.6	100	0 22	63	485	
Manila	026	67	17	202	58	023	13	32	98	0.65	9.8	95	Concess
Medan	013	63	24	131	29	0 2 7	15	13	100	12	49	81	B&C
M um bai	0 2 5	100	5	178	18	006	1	73	67	108	33.3	8	
Nuku abfa	015	100	21	78	45	0.63	14	31	100	0.8	16	28	

Source: ADB 1997

Water Utilities in Asia - III

	Productio	Coverage	Water	C onsum pt	UFW (%)	Average	WaterBill	Power/wa	Metering	Operating	Staff/100	New	Private
	n/Populati	(%)	Availability	ion (/c/d)	orNRW	Tariff	(US\$/mon	terbill		ratio	0	connectio	sector
	on		(hours)		(%)	(US\$/mon	th)	ratio			connectio	n (US\$)	participati
	$(m^3/d/c)$					th)					n ration		on
Penang	0.51	99	24	244	20	021	8	43	100	0.74	4.4	59	
Phnom Penh	012	83	12	32	61	015	5	23	88	0.61	135	164	
PortVila	036	98	24	273	26	0.49	22	2	100	112	5	151	Concess
Rarotonga	09	100	24	267	70				13		35	136	
Seoul	0.47	100	24	209	35	028	8	33	100	084	23	1977	MeterRead
Shanghai	0.58	100	24	143	14	0.07	20	41	100	119	61		
Singapore	0.46	100	24	183	7	0.55	12	3.7	100	6.0	2	350	B&C
Suva	0.34	98	24	135	43	0 2 2	11	2.7	100	104	8.9	11	
Taipei	0.72	99	24	262	37	0.39	8	5.5	100	0.69	11	1079	B&C / Leaks
Taskent	128	98	24	109	63	0.02	1	92	2	0.85	179	164	
Thimphu	128	93	12	93	53	0۵5	3	19	99	6.0	255	70	
Tianjin	0.33	100	24	101	11	0.06	1	3.8	100	105	499	362	
U laanbatar	023	100	21	177	49	01	1	43	14	0.74	5792		
Ulsan	029	84	24	157	33	0.4	16	2.8	100	0.71	0.8	902	
Veintianc e	026	54	24	172	39	013	7	1.7	100	0.95	161	88	
Yangon	012	60	12	67	60	0.46	19	19	7	027	12	906	

Source: ADB 1997

Average Tariff in Asian Cities

Who is Paying More for Less - I

Metro Manila (Philippines) – Solis et al. (ADB) Average HH monthly water bill and consumption P678 (US\$12) from vendors for 7.88m³ P344 (US\$6.1) from public faucets / pumps for 8.40m³ P414 (US\$7.4) from 2 or more sources including Mynilad for 9.33m³ P263 (US\$4.7) for Maynilad users for 22.45m³

Water in Asian Cities – Manila (ADB)

Small-scale private water providers, serving poor urban areas, may account for as much as 25% of the total volume of water distributed and as much as 75% of total revenue generated

Winnie Flores, whose family pays p1000 (US\$17.8) monthly for accommodation, pays p900 (US\$16) monthly for 6m³ of water

Piped water users pay about p160 (US\$3) monthly for about 30m

Who is Paying More for Less-II

Jakarta (Indonesia) – The Jakarta Post

Clean and cheap piped water reaches only to half of 12 million

A lady food shop owner buys at least 10 buckets from private vendors at a cost of Rp20,000 (US\$2.2), spending more than Rp600,000 per month on water

Minimum salary of workers in Jakarta is Rp629,000

A housewife, living up-market, gets 24-hour piped good quality water supply and pays Rp100,000 to 200,000 per month

Another housewife satisfied, as good quality and no smell, spends less than 100,000 per month on piped water

Who is Paying More for Less - II

COMPARISON OF THE COST OF WATER BOUGHT FROM INFORMAL VENDORS WITH THE COST OF WATER SUPPLIED											
	Α	В	Ratio B/A		Α	В	Ratio B/A				
	Cost of Water for	Price charged by			Cost of Water for	Price charged					
	Domestic Use	informal vendors			Domestic Use	by informal					
						vendors					
	(House Connections				(House						
City	10 m3/month)			City	10 m3/month)						
	US\$/m3	(US\$/m3)			US\$/m3	(US\$/m3)					
Vientiane	0.11	14.68	135.92	Ulaanbaat	0.04	1.51	35.12				
				ar							
Male*	5.7	14.44	2.53	Hanoi	0.11	1.44	13.33				
Mandalay	0.81	11.33	14	Mumbai*	0.03	1.12	40				
Faisalabad	0.11	7.38	68.33	Ho Chi	0.12	1.08	9.23				
Development	0.12	C 05	50	Minn Chienemei	0.45	4.04	<u> </u>				
Bandung	0.12	6.05	50	*	0.15	1.01	0.04				
Delhi*	0.01	4.89	489	Karachi	0.14	0.81	5.74				
Manila	0.11	4.74	42.32	Lae*	0.29	0.54	1.85				
Cebu	0.33	4.17	12.75	Chittagong *	0.09	0.5	5.68				
Davao*	0.19	3.79	19.95	Dhaka	0.08	0.42	5.12				
Chonburi*	0.25	2.43	9.57	Jakarta	0.16	0.31	1.97				
Phnom Penh	0.09	1.64	18.02	Colombo*	0.02	0.1	4.35				
Bangkok*	0.16	1.62	10								
* Some water	vending but not com	mon.									

Source: Second Water Utilities Data Book Asian and Pacific Region, Asian Development Bank, October 1997.

Quality of Service and WTP

Relationship between Quality and WTP: Based on the WTP studies in Pakistan

Public Sector Mana (Accountability is	gement weak)	Decen (Acco	itralized Manager <mark>ment</mark> ountability is strong)				
Low reliability and quality of water supply		Lower costs	High reliability and quality of water supply				
Indifferent between water and water s	n canal supply	Diffe wate	erent between canal er and water supply				
Free labor = low	er WTP	Ben	efits = High WTP				
Lower benefit-cos	st ratio	Higher benefit-cost ra <mark>tio</mark>					

Major Challenges for Water Utilities

Efficiency

- 1. Production costs
- 2. Un-accounted for water
- 3. Operating efficiency

Effectiveness

- 1. Production per population
- 2. Average tariff and cost recovery
- 3. New connections

Targets for PPP in Water Utilities

- Investment: There is a wide gap between demand and supply for water supply and wastewater services, and public sector in most of the countries cannot bridge this gap on its own
- Efficiency: There is no concrete objective evidence to show that water utilities being managed by private sector are efficient then the utilities being managed by public sector. This is mainly due to lack of comparable data. However, there is general consensus that cost of production in public sector is high in various sectors
- Effectiveness: The social surveys usually support the hypothesis that quality of the service is low in public sector, due to quasi-monopolistic nature of public goods, and due to difficulties in "accountability" process within public sector

Role of Various Stakeholders

International Environmental Technology Centre

JNEP

Three Models for PPP

Private Sector	Mega	PPP	Local	PPP	Community PPP		
Type of Contract	Conces sion	BOT	Conces sion	BOT	Self Built	Govt. Built	
Manila (Philippines)							
Macao (China)							
Johor Bahru (Malaysia)							
Cartagena (Colombia)							
Cordoba (Argentina)							
OPP – (Pakistan)							
Hyderabad (Pakistan)							
Weihai (China)							

Preliminary Assessment

Private Sector	Me	ga PF	Ъ	Lo	ocal Pl	ЪЪ	Community PPP			
Stakeholders	Private Sector	Public Sector	Users Citizens	Private Sector	Public Sector	Users Citizens	Private Sector	Public Sector	Users Citizens	
Risk										
Political	Η	Н	М	М	L	L	М	L	L	
Social	Η	Μ	Н	М	L	М	L	L	L	
Economic	Η	М	М	М	L	L	М	L	L	
Financial Risk	Η	Н	Η	Н	М	М	М	L	L	
Legal Risk	Η	Н	М	М	L	L	М	L	L	
Managerial Risk	Μ	М	М	T	М	Н	H	Μ	М	
Technical Risk	М	М	М	М	L	М	М	М	М	
Environmental	L	М	Н	L	М	Н	L	М	М	
Physical Risk	М	Н	Н	М	М	М	М	М	М	
Canacity										
Nagatiationa			1	N/I	N/I		Ν./	N /I	N/I	
5	⊓ ——Inter	L national	L Environn	IVI Iental Tec	IVI Imology (L Centre	IVI	IVI	IVI	
Implementation	Н	Μ	L	Μ	M	L	Μ	Μ	Μ	

Important Lessons – so far

Local govt. decentralization is vital to initiate and implement PSP based projects Impartial and competent regulatory body should be intact prior inception of PSP Strengthening the capacity of public sector to negotiate and implement PSP Investment in local currency to reduce risk of devaluation and tariff-hike Public awareness and stakeholder involvement for confidence building in PSP Long-term business goals, rather than short-term profit-making targets Home-grown private sector and strengthening of local managerial capacity Combination of water supply and sanitation in a single bill to collect the tariff Appropriate user-charges and subsidies to support 'cost-recovery' and 'equity'

Role of International Cooperation

Location of Iraqi Marshlands

Importance of Marshlands

Largest wetland ecosystem in Middle East & Western Eurasia:

- Ecological importance
 - Transboundary water resource
 - Habitat for endangered species
 - Sustain freshwater fisheries & Persian Gulf ecosystems
 - Part of intercontinental flyways of migratory birds
- Socio-cultural importance
 - Traditional lifestyle of Marsh Arabs for ~5,000 years
 - Considered by many as the location of Garden of Eden
- Economic importance
 - Existence of oil and gas

Process of Marshland Destruction

2003~

20

How UNEP Became Involved

- Marshland issues identified as priority by Iraqi Authorities
 - Included in list of priority projects submitted to UN Trust Fund for Iraq Reconstruction
- Direct appeal to Japanese Government by Iraq
 - Requested as priority to Japanese Prime Minister by Iraqi delegation, as well as appeal to Foreign & Environment Ministers
- Previous experience by UNEP
 - UNEP responsible for alerting the world on marshland destruction
 - Experience in environmentally sound technology (EST) promotion through IETC
 - Post conflict assessment experience

Funds for project provided to UN Trust Fund by Japanese Government, to be implemented by UNEP

Project Overview

Highlights: EST Pilot Implementation

<u>What?</u> 3 pilot applications (US\$1 million+ each) Drinking water provision Sanitation and wastewater treatment provision

Wetland and water quality management

Where? Targeting smaller communities

- How? Involvement of Iraqi partners
 - Pilot sites nominated by MoE, MoWR, MoMPW, local communities, and selected based on <u>consensus</u>
 - Sampling, local training & monitoring organized by Iraqi partners

What are ESTs?

- Defined and endorsed in Agenda 21
 - Range from low- to high-tech
- Suitable for developing countries
 - Tend to require less maintenance and skill, culturally acceptable, cost less to buy and operate, create employment
- Suitable options not always intuitively obvious

Highlights: EST Examples

Suitable ESTs depend on local conditions and needs → will be decided based on EST assessment

Highlights: Candidate EST Pilot Sites Selected

Thi-Qar

Al Islah

Kirmashi

Badir Al Rumaid

Al Fuhud

Al Hadam

Al Sewelm

Al MwagidAbu Sabat

Abu Khussaf

Basra

Al Nashab

v Centre

Site selection based on priorities identified by Iraqi ministries and local community group, technical criteria, and consensus

Highlights: Marshland Information Network

Challenges:

- Limited data and information sharing
- Unreliable connections

What we have done:

- Set up user friendly Marshland Information Network (MIN)
 - 10 websites developed: ministries, governorates, Marsh Arab Forum, Iraq Foundation, etc.
 - 5 servers in Iraq
 - Started reflooding reports
 - to be available on MIN
 - www.estis.net/communities/min_ arabic/

Capacity Building: Training Courses

Completed by the end of May 2005:

- 1. on Water Quality Management (Shiga, Dec. 2004)
- 2. on Sustainable Sanitation (Osaka, Dec. 2004)
- 3. on Phytotechnology for Wetland Management (Cairo, Dec. 2004)
- 4. on Wetland Remote Sensing (Amman, Feb. 2005)
- on Marshland Information Network = MIN (Amman, Mar. 2005)
- 6. on IWRM Policy and Integration (Amman, Apr. 2005)
- on ESTs for Drinking Water Provision (Osaka, May 2005)
- 194 participants in total:

Male 146 (75%) and Female 48 (25%)

Participants belong to:

Iraq Ministry of Environment, Ministry of Water Resources, Ministry of Municipalities and Public Work, Governorate offices, Academia, Local organizations, etc.

Visit to community sanitation plant

Information network training

Field data collection training

Capacity Building: Training Courses

Schedule of Training Courses (June-July 2005):

- Community Level Initiatives (Alexandria)
- Wetland Management (Cairo)
- EST Assessment Methodology an Implementation (Amman)
- High-Level Study Tour (Japan)

Secondary Training in Iraq:

Currently under negotiation for implementation of the secondary training at the Training Centre of the Ministry of Municipalities and Public Work in Iraq

Training Kit/Materials:

Preparation of Training Manual for each Training Course as well as Train-the-Trainers Manual

Phytotechnology Wetland Management Training Course

Sustainable Sanitation Training Course

Challenge for Future

- Call for on-going project implementation:
 - Received a request for continuous support of secondary project implementation from Iraq
 - Important recognition of necessity for longterm marshland management
 - UNEP's role as catalyst among UN organisations and concerned countries

Highlights: Towards Coordinated Response

Donor coordination mechanism established

- Mechanism reflects thematic mandates of Iraqi institutions
 - Endorsed by Iraqi partners and donors
- UNEP nominated as facilitator for mechanism
 - Financial support from Italy, UK, activity support from Canada

Example of coordination

- Water quality monitoring: field assistance to be provided by Iraq Foundation, coordination in monitoring envisioned
- Pilot implementation: coordination of sites with Italian project to avoid overlap, dialogue with UN agencies

Moving towards coordinated management plan/strategy development, in partnership

Project website & MIN

Project website:

- in Japanese: http://marshlands-jp.unep.or.jp
- in English: http://marshlands.unep.or.jp
- in Arabic: http://marshlands.unep.or.jp/ to click the logo in Arabic

Marshland Information Network (MIN):

in English: www.estis.net/communities/MIN_Eng/
in Arabic: www.estis.net/communities/min_arabic/

Thank you very much

For further information: www.unep.or.jp/marshlands

