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Abstract

We study the cross-country evolution of technology diffusion processes. Using data

from the last two centuries for twenty-five major technologies, we document two new facts:

there has been convergence in adoption lags between rich and poor countries, while there

has been divergence in long run penetration rates, once technologies are adopted. We

show that the evolution of aggregate productivity implied by these trends in technology

diffusion accounts for the bulk of the evolution of the world income distribution in the last

two hundred years. In particular, initial cross-country differences in adoption lags account

for a significant part of the cross-country income divergence in the nineteenth century. The

divergence in penetration rates accounts for the divergence during the twentieth century.
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1 Introduction

At the beginning of the nineteenth century, differences in income per capita between rich and

poor countries were relatively small. The average income per capita in 1820 of the seventeen

advanced countries denoted by Maddison (2004) as “Western countries” was 1.9 times the

average of non-Western countries.1 For the next 180 years, Western countries grew signifi-

cantly faster and, by 2000, their per capita income was 7.2 times the average of non-Western

countries. This divergence in income is known as the Great Divergence (e.g., Pritchett, 1997

and Pomeranz, 2000), and is one of the great puzzles in economics (Acemoglu, 2011).

More generally, we know little about the drivers of cross-country differences in productivity

growth over protracted periods of time. For example, Klenow and Rodŕıguez-Clare (1997) show

that factor accumulation (physical and human capital) accounts only for 10% of cross-country

differences in growth between 1960 and 1985. Clark and Feenstra (2003) find similar results for

the period 1850-2000. What accounts for the bulk of cross-country differences in the evolution

of productivity over long horizons and, in particular, for the Great Divergence?

This paper explores the role that technology has played in the evolution of income growth.

To this end, we first study how technology has diffused over the last 200 years. We document

significant differences in technology diffusion across countries. Second, we quantify the effect

of these differential patterns of diffusion on the evolution of the world income distribution over

the last two centuries.

We decompose the contribution of technology to productivity growth into the extensive

and intensive margins. The extensive margin captures the range of technologies available,

which is given by the lag with which new technologies are adopted. New technologies embody

higher productivity. Therefore, a reduction in adoption lags increases the average productivity

of technologies adopted, thereby raising aggregate productivity growth. The intensive margin

captures the penetration rate of new technologies. The more units of any new technology

(relative to income) a country uses, the higher the number of workers or units of capital that

can benefit from the productivity gains brought by the new technology.2 As a result, increases

in the penetration of technology raise the growth rate of productivity.

To study the evolution of technology diffusion, first we need to measure these adoption

margins from the diffusion curves of individual technologies. We illustrate our strategy to

identify the adoption margins in Figure 1. Figures 1a and 1b plot the (log) of the tonnage

of steam and motor ships over real GDP in the UK and Indonesia and the (log) number of

computers over real GDP for the U.S. and Vietnam, respectively. One feature of these plots

is that, for a given technology, the diffusion curves for different countries have similar shapes,

1Maddison (2004) defines as Western countries Austria, Belgium, Denmark, Finland, France, Germany, Italy,
Netherlands, Norway, Sweden, Switzerland, Untied Kingdom, Japan, Australia, New Zealand, Canada and the
United States.

2In our context, this is isomorphic to differences in the efficiency with which producers use technology.
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Figure 1: Examples of diffusion curves

(a) Diffusion of Steam and Motor ships (b) Diffusion of PCs

but displaced vertically and horizontally. This property holds generally for a large majority

of the technology-country pairs. Given the common curvature of diffusion curves, the relative

position of a curve can be characterized by only two parameters. The horizontal shifter informs

us about when the technology was introduced in the country. The vertical shifter captures the

penetration rate the technology will attain when it has fully diffused.

These intuitions are formalized with a model of technology adoption and growth. Crucial

for our purposes, the model provides a unified framework for measuring the diffusion of specific

technologies and assessing their impact on income growth. The model features both adoption

margins, and has predictions about how variation in these margins affect the curvature and

level of the diffusion curve of specific technologies. This allows us to take these predictions to

the data and estimate adoption lags and penetration rates fitting the diffusion curves derived

from our model. We identify the extensive and intensive adoption margins for 25 significant

technologies invented over the last 200 years for a sample of 130 countries. Then, we use our

estimates to analyze the cross-country evolution of technology diffusion.

We document two new facts. First, cross-country differences in adoption lags have narrowed

over the last 200 years. That is, adoption lags have declined more in poor/slow adopter

countries than in rich/fast adopter countries. Second, the gap in penetration rates between

rich and poor countries has widened over the last 200 years, inducing a divergence in the

intensive margin of technology adoption. These patterns are consistent with Figure 1. The

horizontal gap between the diffusion curves for steam and motor ships in the UK and Indonesia

is much larger than the horizontal gap between the U.S. and Vietnam for computers (131 years

vs. 11 years). In contrast, the vertical gap between the curves for ships in the UK and Indonesia

are smaller than the vertical gap between the diffusion curves of computers in the U.S. and

Vietnam (0.9 vs. 1.6).
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After characterizing the patterns of technology diffusion, we evaluate quantitatively their

implications for the evolution of the world income distribution. We estimate the evolution of

the diffusion margins for various groups of countries. Then, we feed in the estimated diffusion

patterns into the aggregate representation of our model economy, and we compare the resulting

income dynamics with the data. Note that this approach does not force the estimated adoption

margins to fit the actual aggregate productivity dynamics.

We find that initial cross-country differences in the patterns of technology diffusion induce a

world income distribution that is very similar to the actual distribution in 1820. Cross-country

differences in technology diffusion patterns over the last two centuries account well for the

evolution of the world income distribution. The model generates very protracted transitional

dynamics, which account better for the dynamics of productivity over longer horizons than

the neoclassical growth model.3 Our simulations show that it took approximately one century

since the beginning of the Industrial Revolution for Western economies to reach their Modern

long run growth rate of 2%. With respect to the Great Divergence, we observe that differences

in the evolution of technology diffusion induce an increase by a factor of 3.2 in the income gap

between Western and non-Western countries between 1820 and 2000. This represents 82% of

the actual increase in the income gap, which grew by a factor of 3.9.

It is important to emphasize that we use a general equilibrium model. Thus, when eval-

uating the role of technology for cross-country differences in income, our analysis takes into

account that income affects demand for goods and services that embody new technologies. In

our baseline model, the restriction that our model has a balanced growth path implies that the

income elasticity of technology demand is equal to one. Because this implication of the model

may be restrictive, we assess the robustness of our findings to allowing for non-homotheticities

in the demand for technology. That is, we allow the income elasticity of technology demand

to differ from one. We find that our results are robust to allowing for non-homotheticities.

This paper is related to the literature analyzing the channels driving the Great Divergence.

One stream of the literature has emphasized the role of the expansion of international trade

during the second half of the nineteenth century. Galor and Mountford (2006) argue that

trade affected asymmetrically the fertility decisions in developed and developing economies,

due to their different initial endowments of human capital, leading to different evolutions of

productivity growth. O’Rourke et al. (2012) elaborate on this perspective and argue that

the direction of technical change, in particular the fact that after 1850 it became skill-biased

(Mokyr, 2002), contributed to the increase in income differences across countries, as Western

countries benefited relatively more from them. Trade-based theories of the Great Divergence,

however, need to confront two facts. Prior to 1850, the technologies brought by the Indus-

trial Revolution were unskilled-biased rather than skilled-biased (Mokyr, 2002). Yet, incomes

3See, for example, Barro and Sala-i-Martin (2003) and King and Rebelo (1993) for a calibration of the
neoclassical growth model.
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diverged also during this period. Second, trade globalization ended abruptly in 1913. With

WWI, world trade dropped and did not reach the pre-1913 levels until the 1970s. In contrast,

the Great Divergence continued throughout the twentieth century.

Probably motivated by these observations, another strand of the literature has studied the

cross-country evolution of Solow residuals and has found that they account for the majority

of the divergence (Easterly and Levine, 2001, and Clark and Feenstra, 2003). Though these

authors interpret Solow residuals as a proxy for technology, our paper is the first to use direct

measures of technology to document how technology diffusion patterns have evolved in the

cross-section over the last two centuries. It is also the first to show the importance that these

technology dynamics have had for cross-country income dynamics.4,5

Finally, our paper builds upon Comin and Hobijn (2010). They estimate the adoption lags

for 15 technologies and quantify how cross-country differences in average adoption lags con-

tribute to differences in current income levels. To do this exercise, they assume all countries

are in balanced growth path, growing at a common growth rate.6 In this paper, we develop a

new procedure to estimate not only adoption lags, but also the intensive margin of adoption.

In doing so, we build a multi-sectoral model that explicitly accounts for the complementar-

ities across technologies. Second, we study for the first time the cross-country evolution of

the intensive and extensive margins of technology adoption over the last two centuries. To

our knowledge, we are the first to document the divergence of the intensive margin and the

convergence of the adoption lags. Third, this paper studies the transitional dynamics of the

model and, most importantly, how technology dynamics have contributed to the evolution of

the world income distribution that we have observed over the last 200 years. As emphasized

above, this is one of few papers that provides an account of the dynamics of income growth

over protracted periods of time.

The rest of the paper is organized as follows. Section 2 presents the model. Section

3 presents the estimation strategy based on the structural model. Section 4 estimates the

extensive and intensive margins of adoption and documents the cross-country evolution of

both adoption margins. Section 5 quantifies the effect of the technology dynamics on the

evolution of the world income distribution. Section 6 concludes.

4Our analysis is also related to a strand of the literature that has studied the productivity dynamics after
the Industrial Revolution. Crafts (1997), Galor and Weil (2000), Goodfriend and McDermott (1995), Hansen
and Prescott (2002) and Tamura (2002) among others, provide complementary reasons why there was a slow
growth acceleration in productivity after the Industrial Revolution.

5Our paper is also related to Lucas (2000) who studies the evolution of the world income distribution using
a model that assumes a negative relationship between the time a country takes off and the TFP growth it
experiences during the transition. Lucas (2000) predicts either no growth or a strong convergence.

6Gancia et al. (2011) also quantify the role of factor endowments and technology on cross-country income.
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2 Model

We present a model of technology adoption and growth. Our model serves four purposes.

First, it precisely defines the intensive and extensive margins of adoption. Second, it shows

how variation in these margins affects the evolution of the diffusion curves for individual

technologies. Third, it helps develop the identification strategy of the extensive and intensive

margins of adoption. Fourth, because this is a general equilibrium model with an aggregate

representation, it can be used to study the dynamics of productivity growth.

2.1 Preferences and Endowments

There is a unit measure of identical households in the economy. Each household supplies

inelastically one unit of labor, for which they earn a wage wt at time t. Households can save

in domestic bonds which are in zero net supply. The utility of the representative household is

given by

U =

∫ ∞
t0

e−ρt ln(Ct)dt, (1)

where ρ denotes the discount rate and Ct, consumption at time t. The representative household

maximizes its utility subject to the budget constraint (2) and a no-Ponzi condition (3)

Ḃt + Ct = wt + rtBt, (2)

lim
t→∞

Bte
∫ t
t0
−rsds ≥ 0, (3)

where Bt denotes the bond holdings of the representative consumer, Ḃt is the increase in bond

holdings over an instant of time, and rt the return on bonds.

2.2 Technology

World technology frontier At a given instant of time t, the world technology frontier is

characterized by a set of technologies and a set of vintages specific to each technology. Each

instant, a new technology τ exogenously appears. We denote a technology by the time it was

invented. Therefore, the range of invented technologies at time t is (−∞, t].
For each existing technology, a new, more productive, vintage appears in the world frontier

every instant. We denote vintages of technology τ generically by vτ . Vintages are also indexed

by the time in which they appear. Thus, the set of existing vintages of technology τ available

at time t (> τ) is [τ , t]. The productivity of a technology-vintage pair has two components.

The first component, Z(τ , vτ ), is common across countries and it is purely determined by
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technological attributes,

Z(τ , vτ ) = e(χ+γ)τ+γ(vτ−τ)

= eχτ+γvτ , (4)

where (χ+ γ)τ is the productivity level associated with the first vintage of technology τ and

γ(vτ − τ) captures the productivity gains associated with the introduction of new vintages

vτ ≥ τ . The second component is a technology-country specific productivity term, aτ , which

we further discuss below.

Adoption lags Economies are typically below the world technology frontier. Let Dτ denote

the age of the best vintage available for production in a country for technology τ . Dτ reflects

the time lag between when the best vintage in use was invented and when it was adopted

for production in the country; that is, the adoption lag.7 The set of technology τ vintages

available in this country is Vτ = [τ , t −Dτ ].8 Note that Dτ is both the time it takes for this

country to start using technology τ and its distance to the technology frontier in technology

τ .

Intensive margin New vintages (τ , v) are incorporated into production through new inter-

mediate goods that embody them.9 Intermediate goods are produced competitively using one

unit of final output to produce one unit of intermediate good.

Intermediate goods are combined with labor to produce the output associated with a given

vintage, Yτ ,v. Let Xτ ,v be the number of units of intermediate good (τ , v) used in production,

and Lτ ,v be the number of workers that use them. Yτ ,v is given by

Yτ ,v = aτZ(τ , v)Xα
τ,vL

1−α
τ,v . (5)

The term aτ in (5) captures the effect of factors that reduce the effectiveness of this technology

in the country. Thus, in equilibrium, it affects how intensively this technology is used. We refer

to aτ as the intensive margin. Differences in the intensive margin may reflect differences in the

number of users of the technology and differences in the efficiency with which the technology

is used. Our empirical measures of the intensive margin will capture both of these sources of

variation.

7Adoption lags may result from a cost of adopting the technology in the country that is decreasing in
the proportion of not-yet-adopted technologies as in Barro and Sala-i-Martin (1997), or in the gap between
aggregate productivity and the productivity of the technology, as in Comin and Hobijn (2010).

8Here, we are assuming that vintage adoption is sequential. Comin and Hobijn (2010) and Comin and
Mestieri (2010) provide micro-founded models in which this is an equilibrium result rather than an assumption.

9In what follows, we omit the subscript τ from the vintage notation and write v when there is no confusion.
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There are many potential drivers of the adoption lags Dτ and the intensive margins aτ .10

Given that the goal of the paper is to measure the equilibrium adoption margins and assess

their contribution to productivity growth, the precise nature of these drivers of adoption is not

our focus in this present work. Therefore, we simplify the analysis in the model by treating

these margins of adoption as exogenous parameters.11

Production The output associated with different vintages of the same technology can be

combined to competitively produce sectoral output, Yτ , according to

Yτ =

(∫ t−Dτ

τ
Y

1
µ
τ ,v dv

)µ
, with µ > 1. (6)

Similarly, final output Y results from aggregating competitively sectoral outputs Yτ as

Y =

(∫ τ̄

−∞
Y

1
θ
τ dτ

)θ
, with θ > 1, (7)

where τ̄ denotes the most advanced technology adopted in the economy. That is, the technol-

ogy τ for which τ = t−Dτ .

2.3 Factor Demands and Final Output

We take the price of the final good as the numéraire. The demand for output produced with

a particular technology is

Yτ = Y p
− θ
θ−1

τ , (8)

where pτ is the price of sector τ output. Both the income level of a country, Y , and the price

of a technology, pτ affect the demand of output produced with a given technology. Because of

the homotheticity of the production function, the income elasticity of technology τ output is

one. Similarly, the demand for output produced with a particular technology vintage is

Yτ ,v = Yτ

(
pτ
pτ ,v

)− µ
µ−1

, (9)

10For example, taxes, risk of expropriation, relative abundance of complementary inputs or technologies,
frictions in capital, labor and goods markets, barriers to entry for producers that want to develop new uses for
the technology,. . .

11See Comin and Hobijn (2010) and Comin and Mestieri (2010) for ways to endogenize these adoption margins
as equilibrium outcomes.
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where pτ ,v denotes the price of the (τ , v) intermediate good.12 The demands for labor and

intermediate goods at the vintage level are

(1− α)
pτ ,vYτ ,v
Lτ ,v

= w, (10)

α
pτ ,vYτ ,v
Xτ ,v

= 1. (11)

Perfect competition in the production of intermediate goods implies that the price of

intermediate goods equals their marginal cost,

pτ ,v =
w1−α

Z(τ , v)aτ
(1− α)−(1−α)α−α. (12)

Combining (9), (10) and (11), the total output produced with technology τ can be expressed

as

Yτ = ZτL
1−α
τ Xα

τ , (13)

where Lτ denotes the total labor used in sector τ , Lτ =
∫ max{t−Dτ ,τ}
τ Lτ ,vdv, and Xτ is the

total amount of intermediate goods in sector τ , Xτ =
∫ max{t−Dτ ,τ}
τ Xτ ,vdv. The productivity

associated with a technology is

Zτ =

(∫ max{t−Dτ ,τ}

τ
Z(τ , v)

1
µ−1dv

)µ−1

=

(
µ− 1

γ

)µ−1

aτ︸︷︷︸
Intensive Mg

e(χτ+γmax{t−Dτ ,τ})︸ ︷︷ ︸
Embodiment Effect

(
1− e

−γ
µ−1

(max{t−Dτ ,τ}−τ)
)µ−1

︸ ︷︷ ︸
Variety Effect

. (14)

Zτ is affected by the intensive margin, aτ , and the adoption lag, Dτ . A higher intensive margin

increases the sectoral productivity. The adoption lag has two effects on Zτ . First, the average

vintage used is more productive when the adoption lag is lower, resulting in higher aggregate

productivity. We denote this the embodiment effect. Second, because there productivity gains

from using a broader range of varieties, the shorter the lags, the higher Zτ is. We denote this

is as the variety effect. It follows from (14) that the variety effect is strongest at the early

stages of adoption. As additional vintages are added to production, marginal productivity

gains decline and, eventually, their impact on the variety effect tends to zero. Hence, this

property of the variety effect introduces a curvature in Zτ that is determined by the adoption

lag.

12Even though older technology-vintage pairs are always produced in equilibrium, the value of its production
relative to total output is declining over time.
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The price index of technology τ output is

pτ =

(∫ t−Dτ

τ
p
− 1
µ−1

τ ,v dv

)−(µ−1)

=
w1−α

Zτ
(1− α)−(1−α)α−α. (15)

There exists an analogous representation for the aggregate production function in terms of

aggregate labor (which is normalized to one),

Y = AXαL1−α = AXα = A1/(1−α)(α)α/(1−α), (16)

with

A =

(∫ τ̄

−∞
Z

1
θ−1
τ dτ

)θ−1

, (17)

where τ̄ denotes the most advanced technology adopted in the economy.

2.4 Equilibrium

Given a sequence of adoption lags and intensive margins {Dτ , aτ}∞τ=−∞, a competitive equi-

librium in this economy is defined by consumption, output, and labor allocations paths

{Ct, Lτ ,v(t), Yτ ,v(t)}∞t=t0 and prices {pτ (t), pτ ,v(t), wt, rt}∞t=t0 , such that

1. Households maximize utility by consuming according to the Euler equation

Ċ

C
= r − ρ, (18)

satisfying the budget constraint (2) and (3).

2. Firms maximize profits taking prices as given (equation 12). This optimality condition

gives the demand for labor and intermediate goods for each technology and vintage,

equations (10) and (11), for the output produced with a vintage (equation 9) and for

the output produced with a technology (equation 8).

3. Labor market clears

L =

∫ τ̄

−∞

∫ v̄τ

τ
Lτ ,vdvτdτ = 1, (19)

where v̄τ denotes the last adopted vintage of technology τ .

4. The resource constraint holds

Y = C +X, (20)

C = (1− α)Y. (21)
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Combining (19) and (10), it follows that the wage rate is given by

w = (1− α)Y/L. (22)

Combining the Euler equation (18) and the resource constraint (21) we obtain that the interest

rate depends on output growth and the discount rate r = Ẏ
Y + ρ.

Equation (16) implies that output dynamics are completely determined by the dynamics

of aggregate productivity, A.To guarantee the existence of a balanced growth path, a sufficient

condition, which we take as a benchmark, is that both adoption margins are constant across

technologies, Dτ = D and aτ = a.13 If we make the simplifying assumption that θ = µ,

aggregate productivity can be computed in closed form,14

A =

(
(θ − 1)2

(γ + χ)χ

)θ−1

a e(χ+γ)(t−D). (23)

Naturally, a higher intensity of adoption, a, and a shorter adoption lag, D, lead to higher

aggregate productivity. Along this balanced growth path, productivity grows at rate χ + γ,

and output grows at rate (χ+ γ)/(1− α).15

3 Estimation Strategy

In this section, we describe the estimation procedure used to measure the intensive and ex-

tensive margins of adoption for each technology-country pair.

3.1 Estimating Equations

We derive our estimating equation combining the demand for sector τ output (8), the sectoral

price deflator (15), the expression for the equilibrium wage rate (22), and the expression for

sectoral productivity, Zτ , (14). Denoting by lowercase the logs of uppercase variables, we

obtain the demand equation

yτ = y +
θ

θ − 1
[zτ − (1− α) (y − l)] . (24)

We then use the fact that γ takes small values to simplify the expression of sectoral productivity

zτ to its first order approximation in γ (see Appendix B for calculation details),

zτ ' ln aτ + (χ+ γ)τ + (µ− 1) ln (t− τ −Dτ ) +
γ

2
(t− τ −Dτ ) . (25)

13Comin and Mestieri (2010) show in their micro-founded model of adoption that this is a necessary and
sufficient condition.

14Our empirical analysis in Section 4 suggests that this is a reasonable approximation.
15For discounted utility to be bounded, it is required that (χ+ γ)/(1 − α) < ρ.
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Substituting (25) in (24) gives our main estimating equation. Explicitly indexing country-

specific variables with superscript c and denoting time dependence by a subindex t, the esti-

mating equation is

ycτt = βcτ1 + yct + βτ2t+ βτ3 ((µ− 1) ln(t−Dc
τ − τ)− (1− α)(yct − lct )) + εcτt, (26)

where εcτt denotes a country c, technology τ and time t error term. Equation (26) shows

that we can express the (log of) output produced with technology τ , ycτt, as the summation

of a country-specific constant, βcτ1, various log-linear terms in time and income, and a non-

linear function of the adoption lag. The country-technology intercept, βc1, which contains the

intensive margin acτ , is

βcτ1 = βτ3

(
ln acτ +

(
χ+

γ

2

)
τ − γ

2
Dc
τ

)
. (27)

Aggregate output, yct , enters in (26) because the level of aggregate demand affects the

demand for technology in the economy. Everything else equal, countries with higher output will

have a higher demand. Note that the coefficient on aggregate output in the estimating equation

(26) is one. This is a result of assuming a constant returns to scale aggregate production

function (i.e., homothetic), which ensures the existence of a balanced-growth path. Thus, our

baseline model imposes that the elasticity of technology with respect to output (i.e., the slope

of the Engel curve) must be equal to one. In Section 4.4 we relax this assumption and estimate

directly the Engel curve from the data to assess the robustness of our estimates and findings.

Some of the variables in our data set measure the number of units of the input that embody

the technology (e.g. number of computers) rather than output. For this case, we derive an

estimating equation for input measures. We integrate (11) across vintages to obtain (in logs)

xcτ = ycτ +pcτ +lnα. Substituting in for equation (26), we obtain the following expression which

inherits the properties from (26),16

xcτt = βcτ1 + yct + βτ2t+ βτ3 ((µ− 1) ln(t−Dc
τ − τ)− (1− α)(yct − lct )) + εcτt. (28)

3.2 Identification

The goal of the estimation is to measure the adoption lags and the intensive margins for each

technology-country pair. To this end, we assume that the parameters that govern the growth

in the technology frontier (γ and χ), and the inverse of the elasticity of demand (θ) are the

same across countries, for any given technology. In addition, in our baseline estimation, we

calibrate α, µ, and the invention date, τ . We set µ = 1.3 to match the price markups from

16Note that there are two minor differences between (26) and (28). The first difference is that in the first
equation βτ3 is θ/ (θ − 1) , while in the second it is 1/(θ − 1). The second difference is that, in the second
equation, the intercept βcτ1 has an extra term equal to βτ3 lnα.
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Basu and Fernald (1997) and Norbin (1993), α = .3 to match the capital income share in the

U.S., and τ to the invention date of each technology. Invention dates are detailed in Appendix

A.

These restrictions imply that the coefficients of the time-trend, βτ2, and of the non-linear

term, βτ3, in (26) and (28) are common across countries. They also imply that cross-country

variation in the curvature of (26) and (28) is entirely driven by variation in adoption lags.

Specifically, Dc
τ causes the slopes in ycτ and xcτ to monotonically decline in time since adoption.

Everything else equal, if at a given moment in time we observe that the slopes in ycτ or xcτ are

diminishing faster in one country than another, it must be because the former country has

started adopting the technology more recently. This is the basis of our empirical identification

strategy for Dc
τ . Equivalently, a higher adoption lag Dc

τ shifts the diffusion curve (26) to the

right. Thus, countries that for the same income levels have their diffusion curves “shifted to

the right” have a longer adoption lag.

As the number of adopted vintages increases, the effect of Dc
τ in the diffusion curve vanishes

because the gains from additional varieties become negligible. This implies that ycτ asymptotes

to the common linear trend in time and (log) income plus the country-specific intercept, βcτ1.

Therefore, after filtering differences in aggregate demand, asymptotic cross-country differences

in technology are fully captured by the intercept, βcτ1. In our model, βcτ1 reflects the intensive

margin, acτ , and differences in the average productivity of the technology due to differences

in Dc
τ . The latter effect can be subtracted from βcτ1 using the estimated adoption lag Dc

τ in

equation (27), to obtain an expression for ln acτ as

ln acτ =
βcτ1

βτ3

+
γ

2
Dc
τ −

(
χ+

γ

2

)
τ . (29)

In order to difference out the technology-specific term
(
χ+ γ

2

)
τ and make the estimates of

the intensive margin comparable across technologies (which are measured in different units),

we define the intensive margin of adoption of technology τ in country c, ln âcτ , relative to

the average value of adoption in technology τ for the seventeen Western countries defined in

Maddison (2004),

ln âcτ ≡ ln acτ − ln aWestern
τ =

βcτ1 − βWestern
τ1

βτ3

+
γ

2
(Dc

τ −DWestern
τ ). (30)

Since the diffusion curves that we estimate are equilibrium adoption outcomes, they are

affected by many possible drivers. For example, the long run level of adoption of a country

may be affected by variables such as institutions, geography, policies or endowments. Thus,

the estimates of the intensive margin are the collective projection of these drivers on the long

run level of the technology in the country. It is important to emphasize, however, that because

our model controls for the effect of aggregate demand on technology, cross-country variation in
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the intensive margin (30) is not driven by aggregate demand. In other words, our framework

can separately identify the effect of aggregate demand from the effect of other factors that

determine how intensively a technology is used in a country. This is a critical requirement to

compute how technology adoption affects aggregate productivity.

3.3 Implementation and further considerations

Next, we discuss the baseline estimation procedure for the diffusion equations (26) and (28).17

We estimate (26) and (28) in two stages. For each technology, we first estimate the correspond-

ing diffusion equations jointly for the U.S., the U.K. and France, which are the countries for

which we have the longest time series.18 From this estimation, we take the technology-specific

parameters β̂τ2 and β̂τ3. Then, in the second stage, for each technology-country pair, we

estimate the diffusion curve imposing the values of β̂τ2 and β̂τ3 obtained in the first stage.19

In this second stage, we obtain a technology-country specific parameters, βcτ1 and Dc
τ . Both of

these estimations are conducted using non-linear least squares. Finally, we use the estimated

values for βcτ1, βτ3, Dc
τ , and expression (30) to obtain the estimate of the intensive margin for

a given country-technology pair.20

This two-step estimation method is preferable to a system estimation method for various

reasons. First, in a system estimation method data problems for one country can pollute the

estimates for all countries. Since we judge the data is most reliable in our baseline countries,

we use them for the inference on the parameters that are constant across countries. Second, a

precise estimation of the curvature parameter, βτ3, is more likely when exploiting the longer

time series we have for our baseline countries. Finally, our model is based on a set of stark

neoclassical assumptions. These assumptions are more applicable to the low frictional eco-

nomic environments of our three baseline countries than to that of countries in which are

substantially more distorted. Thus, by estimating the common parameters from the diffusion

data in the baseline countries we reduce the likelihood of estimating them with a bias.

17In Section 4.4, we discuss alternative approaches, their rationale and the robustness of our baseline estimates.
18In the case of railways, we substitute the U.K. for Germany because we lack the initial phase of diffusion

of railways for the UK. In the case of tractors, we substitute the U.S. by Germany data for the same reason.
19Note that the coefficients βτ2 and βτ3 in (26) are functions of parameters that are common across countries

(θ and γ). Therefore their estimates should be independent of the sample used to estimate them. Below we
study how sensible is to assume that βτ3 is common across countries.

20Consistent with our calibration below, we compute the intensive margin using a value for γ in (30) of
2/3 · 1%. In Section 4.4 we conduct robustness analysis of this parametrization.
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4 Estimation Results

4.1 Data Description

We implement our estimation procedure using data on the diffusion of technologies from the

CHAT data set (Comin and Hobijn, 2009), and data on income and population from Maddison

(2004). The CHAT data set covers the diffusion of 104 technologies for 161 countries over the

last 200 years. Due to the unbalanced nature of the data set, we focus on a sub-sample of

technologies that have a broader coverage over rich and poor countries and for which the data

captures the initial phases of diffusion. The twenty-five technologies that meet these criteria

are listed in Appendix A and cover a wide range of sectors in the economy (transportation,

communication and IT, industrial, agricultural and medical sectors). Their invention dates

also span quite evenly over the last 200 years. The number of countries for which we have

data for these twenty-five technologies is 130.

The specific measures of technology diffusion in CHAT match the dependent variables in

specification (26) or (28). These measures capture either the amount of output produced with

the technology (e.g., tons of steel produced with electric arc furnaces) or the number of units

of capital that embody the technology (e.g., number of computers). Note that, differently from

the traditional diffusion literature that looks at the fraction of adopters (Griliches, 1957), our

measures capture the aggregate intensity of use of a technology (see Clark, 1987).

4.2 Estimates

We only use in our analysis the estimates of technology-country pairs that satisfy plausibility

and precision conditions. As in Comin and Hobijn (2010), plausible adoption lags are those

with an estimated adoption date of no less than ten years before the invention date (this

ten year window is to allow for some inference error). Precise are those with a significant

estimate of adoption lags Dc
τ at a 5% level. Most of the implausible estimates correspond

to technology-country cases when our data does not cover the initial phases of diffusion. As

discussed in Section 3.2, this makes it hard for our estimating equation to identify the adoption

lag, since the diffusion curve has no curvature. The plausible and precise criteria are met for the

majority of the technology country-pairs (69%). For these technology country-pairs, we find

that our estimating equations provide a good fit with an average detrended R2 of 0.79 across

countries and technologies (Table C.1).21 The fit of the model indicates that the restriction

that adoption lags and the intensive margin are constant for each technology-country pair and

that the curvature of diffusion is the same across countries are not a bad approximation to

the data.

21To compute the detrended R2, we partial out the linear trend component, γt, of the estimation equation
and compute the R2 for the detrended data.
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Table 1: Estimates of Adoption Lags

Invention
Year Obs. Mean SD P10 P50 P90 IQR

Spindles 1779 31 119 48 51 111 171 89
Ships 1788 45 121 53 50 128 180 104
Railway Passengers 1825 39 72 39 16 70 123 63
Railway Freight 1825 46 74 34 31 74 123 49
Telegraph 1835 43 45 32 10 40 93 43
Mail 1840 47 46 37 8 38 108 62
Steel 1855 41 64 34 14 67 105 51
Telephone 1876 55 50 31 8 51 88 51
Electricity 1882 82 48 23 15 53 71 38
Cars 1885 70 39 22 11 34 65 36
Trucks 1885 62 35 22 9 34 62 32
Tractor 1892 88 59 20 18 67 69 12
Aviation Passengers 1903 44 28 16 9 25 52 18
Aviation Freight 1903 43 40 15 26 42 60 19
Electric Furnace 1907 53 50 19 27 55 71 34
Fertilizer 1910 89 46 10 35 48 54 7
Harvester 1912 70 38 18 10 41 54 17
Synthetic Fiber 1924 48 38 5 33 39 41 3
Oxygen Furnace 1950 39 14 8 7 13 26 11
Kidney Transplant 1954 24 13 7 3 13 25 5
Liver Transplant 1963 21 18 6 14 18 24 3
Heart Surgery 1968 18 12 6 8 13 20 4
Pcs 1973 68 14 3 11 14 18 3
Cellphones 1973 82 15 5 11 16 19 6
Internet 1983 58 7 4 1 7 11 3

All Technologies 1306 44 35 10 38 86 45

Table 1 reports summary statistics of the estimates of the adoption lags for each technology

using the estimation procedure described in Section 3.3. The average adoption lag across all

technologies and countries is 44 years. We find significant variation in average adoption lags

across technologies. The range goes from 7 years for the internet to 121 years for steam and

motor ships. There is also considerable cross-country variation in adoption lags for any given

technology. The range for the cross-country standard deviations goes from 3 years for PCs to

53 years for steam and motor ships.

To compute the intensive margin ln âcτ (equation 30), we calibrate γ = (1 − α) · 1%, with

α = .3. We choose this calibration so that half of the 2% long run growth rate of Western

countries comes from productivity improvements within a technology (γ) and the other half

comes from new technologies being more productive (χ). Section 4.4 conducts the robustness
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Table 2: Estimates of the Intensive Margin

Invention
Year Obs. Mean SD P10 P50 P90 IQR

Spindles 1779 31 -0.02 0.61 -0.85 -0.05 0.75 0.72
Ships 1788 45 -0.01 0.59 -0.58 -0.02 0.74 0.63
Railway Passengers 1825 39 -0.24 0.47 -0.88 -0.17 0.19 0.52
Railway Freight 1825 46 -0.17 0.40 -0.60 -0.19 0.43 0.56
Telegraph 1835 43 -0.26 0.50 -1.00 -0.21 0.29 0.72
Mail 1840 47 -0.19 0.30 -0.63 -0.12 0.13 0.43
Steel 1855 41 -0.22 0.44 -0.71 -0.13 0.20 0.56
Telephone 1876 55 -0.91 0.87 -2.21 -0.84 0.11 1.17
Electricity 1882 82 -0.58 0.57 -1.25 -0.51 0.08 0.90
Cars 1885 70 -1.13 1.14 -2.15 -1.07 0.08 1.62
Trucks 1885 62 -0.86 1.01 -1.66 -0.81 0.13 1.12
Tractor 1892 88 -1.02 0.94 -2.28 -0.91 0.11 1.47
Aviation Passengers 1903 44 -0.45 0.70 -1.33 -0.36 0.23 0.89
Aviation Freight 1903 43 -0.39 0.60 -1.29 -0.16 0.24 0.87
Electric Furnace 1907 53 -0.29 0.53 -0.93 -0.20 0.34 0.79
Fertilizer 1910 89 -0.83 0.79 -1.86 -0.74 0.11 1.29
Harvester 1912 70 -1.10 0.98 -2.66 -0.96 0.16 1.52
Synthetic Fiber 1924 48 -0.52 0.73 -1.57 -0.38 0.23 0.86
Oxygen Furnace 1950 39 -0.81 0.94 -2.31 -0.36 0.10 1.77
Kidney Transplant 1954 24 -0.19 0.35 -0.85 -0.07 0.13 0.35
Liver Transplant 1963 21 -0.33 0.65 -1.62 -0.09 0.10 0.51
Heart Surgery 1968 18 -0.44 0.80 -1.70 -0.11 0.20 0.55
Pcs 1973 68 -0.60 0.58 -1.41 -0.57 0.05 0.92
Cellphones 1973 82 -0.75 0.71 -1.80 -0.58 0.08 1.16
Internet 1983 58 -0.96 1.09 -2.09 -0.80 0.08 1.53

All Technologies 1306 -0.62 0.83 -1.73 -0.40 0.18 1.00

checks of this calibration. We use the value of βτ3 that results from setting the elasticity across

technologies, θ, to be the mean across our estimates, which is θ = 1.28. This value is very

similar to the estimates of price markups from Basu and Fernald (1997) and Norbin (1993).

Table 2 reports the summary statistics of the intensive margin estimates. The average

intensive margin is -.62. This implies that the level of adoption of the average country is 54%

(i.e., exp(−.62)) of the Western countries. There is significant cross-country variation in the

intensive margin. The range of the cross-country standard deviation goes from 0.3 for mail to

1.1 for cars and the internet. The average 10-90 percentile range in the (log) intensive margin

is 1.91, which implies productivity differences by a factor of 17 (i.e., exp(1.9/(1− α)).)
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Table 3: Evolution of the Adoption Lag and Intensive Margins

Dep. Var.: Log(Lag) Intensive
World Western Rest World Western Rest

(1) (2) (3) (4) (5) (6)

Year −1820 -0.0106 -0.0080 -0.0112 -0.0029 -0.0000 -0.0054
(0.0004) (0.0006) (0.0003) (0.0005) (0.0002) (0.0005)

Constant 4.26 3.67 4.48 -0.32 0.00 -0.39
( 0.06) ( 0.07) ( 0.05) ( 0.05) ( 0.04) ( 0.07)

Obs. 1274 336 938 1306 350 956
R2 0.45 0.34 0.53 0.04 0.00 0.13

Note: robust standard errors in parentheses. Each observation is re-weighted so that each technology
carries equal weight.

4.3 Cross-country evolution of the diffusion process

To analyze the cross-country evolution of the adoption margins in a simple way, we divide the

countries in our data set in two groups, as in Maddison (2004): Western countries, and the

rest of the world, labeled “Rest of the World”or, simply, non-Western.22

Figure 2a plots, for each technology and country group, the median adoption lag among

Western countries and the rest of the world. This figure suggests that adoption lags have

declined over time, and that cross-country differences in adoption lags have narrowed. Table

3 formalizes these intuitions by regressing (log) adoption lags on their year of invention (and

a constant),

lnDc
τ = ρ+ ω · (Invention Yearτ − 1820) + εcτ , (31)

where εcτ denotes an error term. Column (1) reports this regression for the whole sample of

countries showing that adoption lags have declined with the invention date. Columns (2) and

(3) report the same regression separately for Western and non-Western countries, respectively.

We find that the rate of decline in adoption lags is almost a 40% higher in non-Western than

in Western countries (1.12% vs. .81%). Hence, there has been convergence in the evolution of

adoption lags between Western and non-Western countries.

Do we observe a similar pattern for the intensive margin? Figure 2b plots, for each tech-

nology and country group the median intensive margin. This figure shows that the gap in

the intensive margin between Western countries and the rest of the world is larger for newer

than for older technologies. Table 3 studies econometrically this question by regressing the

22The results are robust to the alternative country groupings described in Section 5.2.
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Figure 2: Evolution of Adoption Margins

(a) Convergence of Adoption Lags

(b) Divergence of the Intensive Margin

Note: Bars show median margins of adoption for Western vs. non-Western countries. Technologies:

1. Spindles, 2. Ships, 34. Railway Passengers and Freight, 5. Telegraph, 6. Mail, 7. Steel (Bessemer,

Open Hearth), 8. Telephone, 9. Electricity, 101. Cars and Trucks, 12. Tractors, 134. Aviation

Passengers and Freight, 15. Electric Arc Furnaces, 16. Fertilizer, 17. Harvester, 18. Synthetic Fiber,

19. Blast Oxygen Furnaces, 20. Kidney Transplant, 21. Liver transplant, 22. Heart Surgery, 23. PCs,

24. Cellphones, 25. Internet.
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intensive margin on the invention year and a constant,

ln acτ = ρ+ ω · (Invention Yearτ − 1820) + εcτ . (32)

Column (6) shows that, for non-Western countries, the intensive margin has declined at an

annual rate of .54%.23 Since the intensive margin is measured relative to the mean of West-

ern countries, this evidence shows a divergence in the intensive margin of adoption between

Western and non-Western countries over the last 200 years.24

4.4 Robustness

We assess the robustness of our estimates and the two cross-country trends in technology

diffusion to alternative measurement and estimation approaches.

Curvature The main assumption used in the identification of the adoption margins is that

the curvature of the diffusion curve is the same across countries. In our model, this is a

consequence of having a common elasticity of substitution between sectoral outputs across

countries (i.e., 1/(θ− 1)). To explore the empirical validity of this assumption, we re-estimate

equation (26) allowing βτ3 to differ across countries. Thus, we obtain an estimate β̂
c

τ3 for each

country-technology pair. Then, we test whether β̂
c

τ3 in each country is equal to the baseline

estimate β̂τ3. We find that in 74% of the cases, we cannot reject the null that the curvature

is the same as for the baseline countries at a 5 percent significance level. Table C.3 in the

Appendix reports the results of this test for each technology.

Beyond the statistical validity of the restrictions that our model imposes on βτ3, we would

like to assess how relevant this assumption is for our main technology adoption estimates.

In the first row of Table 4, we report the correlation between the estimates of the diffusion

margins in the baseline and in the unrestricted estimations. The first column reports the

unconditional correlation of adoption lags across all technologies, which is .93. Then, we

estimate this correlation technology by technology. The second column reports the median

correlation within technologies, which is .78. We also report the 25th and 75th percentiles of the

within technology correlation which are .60 and .84, respectively. We report the same statistics

for the intensive margin. The unconditional correlation is .53 and the median correlation within

technologies is .69. Based on these statistics, we conclude that the adoption lags and intensive

23For Western countries, column (5) shows that there is no trend in the intensive margin, as by construction
the intensive margin is defined relative to Western countries.

24One alternative interpretation of Figure 2b is that, rather than a continuous decline in the intensive margin
in non-Western countries, there was a structural break around 1860. We find that the linear model provides a
better statistical fit as measured by the R2. In Section 5.3, we examine the implications for income dynamics
of modeling the divergence in the intensive margin as a continuous or as a discrete process and show that our
results are robust to this modeling choice.
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Table 4: Correlation of Baseline Estimates with Alternative Specifications

Alternative Lags Intensive Margin
Specification Overall Within Tech. Overall Within Tech.

Unrestricted Curvature 0.93 0.78 0.53 0.69
[0.60, 0.84] [0.43, 0.75]

Non-homotheticities 0.97 0.96 0.88 0.89
[0.91, 0.98] [0.85, 0.93]

Estimated µ 0.84 0.87 0.82 0.90
[0.78, 0.93] [0.87, 0.99]

Obsolescence 0.97 0.95 0.85 0.89
[0.88, 0.98] [0.86, 0.95]

No correction intensive - - 0.99 1.00
[0.99, 1.00]

Note: Overall refers to the correlation of all estimates in the baseline and in the alternative specifi-
cation. Within Tech. reports the median correlation of the estimates within technologies. The 25th
and 75th percentiles of the correlation within technologies are reported in brackets.

margins that arise under the unrestricted estimation are highly correlated with the baseline

estimates.

As important as the robustness of the actual estimates is the robustness of the patterns

uncovered for the evolution of the adoption margins. Columns (1) and (2) in Table 5 report the

time-trend coefficient of the (log) adoption lag with respect to the invention date for Western

and non-Western countries. Column (3) reports the time-trend coefficient for the intensive

margin in non-Western countries (recall that by definition is zero for Western countries). For

comparison purposes, we report the baseline estimates in the first row of the table. The

new estimates confirm that both the convergence of adoption lags and the divergence in the

intensive margin are robust to relaxing the restriction of a common curvature across countries.

If anything, the new estimates suggest stronger convergence and divergence patterns than the

ones reported in the baseline.

Non-homotheticities We investigate the robustness of our estimates and the dynamics of

adoption margins once we allow for non-homotheticities in the demand for technology. Non-

homotheticities alter our baseline estimating equation (26) by introducing an income elasticity

in the demand for technology, βτy, potentially different from one,

ycτt = βcτ1 + βτyy
c
t + βτ2t+ βτ3 ((µ− 1) ln(t−Dc

τ − τ)− (1− α)(yct − lct ))) + εcτt. (33)

A practical difficulty in estimating (33) is the collinearity of the time-trend and log-income,

yct . To overcome this problem, we group technologies by their invention date and estimate a
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Table 5: Time Trend Coefficient Across Alternative Specifications

Dependent Variable: Log(Lag) Intensive
Western Rest World Rest World

(1) (2) (3)

Baseline -0.0080 -0.0112 -0.0054
(0.0006) (0.0003) (0.0005)

Unrestricted Curvature -0.0073 -0.0117 -0.0075
(0.0005) (0.0004) (0.0011)

Non-homotheticities -0.0082 -0.0118 -0.0044
(0.0006) (0.0005) (0.0006)

Estimated µ -0.0078 -0.0101 -0.0048
(0.0007) (0.0006) (0.0007)

Obsolescence -0.0081 -0.0113 -0.0062
(0.0006) (0.0004) (0.0007)

No correction intensive - - -0.0042
(0.0005)

Note: This table reports the coefficient ω on the time trend resulting from regressing the (log)
adoption lag and the intensive margin on ρ+ ω(Invention Yearτ − 1820) + εcτ for the different
country groupings. Robust standard errors in parentheses. Each technology observation is
weighted so that each technology carries equal weight.

common income elasticity for each group.25 Accordingly, we divide the technologies in four

groups as a function of their invention data denoted by T = {pre-1850, 1850-1900, 1900-1950,

post-1950}. Then, we proceed similarly to the two-step baseline estimation. In the first step,

we jointly estimate the income elasticity, βTy, along with βτ2, and βτ3 from the diffusion

curves of the U.S., UK, and France for each of the four technology groupings. Effectively, this

method identifies the income elasticity of technology out of the time series variation in the

baseline countries in income and technology. Given that the baseline countries have long time

series that for many technologies cover much of its development experience, we consider this

to be a reasonable approach.

The estimates of the income elasticity for the technologies invented in the four periods,

βTy, range from 1.58 for T = (pre-1850), to 1.99 for T = (1850-1900).26 The estimates of the

slopes of the Engel curves do not vary much across technology groups and they do not have a

clear trend.

Once we have obtained the estimates for the income elasticity, we proceed as in the base-

line estimation, but instead of imposing an income elasticity of one as our theoretical model

suggests, we impose the estimated income elasticity. We estimate βcτ1 and Dc
τ for each country-

25We have implemented a similar approach grouping the technologies according to the sector rather than the
invention date, obtaining similar results.

26Table C.2 in the Appendix reports the estimates.
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technology pair from the equation

ycτt = βcτ1 + β̂Tyy
c
t + β̂τ2t+ β̂τ3 ((µ− 1) ln(t−Dc

τ − τ)− (1− α)(yct − lct ))) + εcτt, (34)

where β̂τ2, β̂τ3 and β̂Ty are the values of βτ2, βτ3 and βTy estimated for the U.S., U.K. and

France in the first step.

The estimates of the two margins that we obtain are highly correlated with our baseline

estimates. The second line in Table 4 shows that the correlation of adoption lags is .96 and

.88 for the intensive margin. Moreover, the patterns of convergence of adoption lags and

divergence of the intensive margin remain. The convergence rate (measured as the difference

between the coefficients of Western and non-Western countries) is -.44% per year, while in

the baseline case it was .31% per year. The divergence rate in the intensive margin is slightly

smaller than in the baseline baseline model (−.44%, versus −.54%). However, both trends are

statistically and economically robust to allowing for non-homotheticities.

Estimated µ In our baseline estimation, we calibrate the elasticity of substitution between

vintages, µ/(µ − 1), because it is difficult to separately identify βτ3 and µ in the baseline

diffusion equation (26). However, it is possible to identify them simultaneously in the structural

equation that results from substituting expression (14) for zτ in (8) rather than its log-linear

approximation.

In the third row of Table 4 we compare the adoption margins obtained using this alternative

approach with our baseline estimates. Both sets of estimates are similar. Their correlation

is .84 for the adoption lags and .82 for the intensive margins. Furthermore, the evolution of

the adoption margins across countries quantitatively resembles very much that of our baseline

estimates. In fact, we cannot reject the null that the time trends for both adoption lags and

the intensive margin are the same as in the baseline estimation.

Obsolescence Some technologies eventually become dominated by others. This is for exam-

ple the case of the telegraph which was rendered obsolete by the telephone. The obsolescence

of technology may affect the shape of the diffusion curves (especially in the long run) and

therefore the estimates of our adoption margins. Since our theory just concerns the diffusion

process (and is silent about the phase out process) it does not provide any guide on how ob-

solescence impacts our technology measures. As a robustness check, we re-estimate equation

(26) over a time sample where obsolescence dynamics are unlikely to be relevant. For each

technology, we censor the sample at the point where the leading country starts to experience

a decline in the per capita adoption level.27 This affects the estimation period in six of the

twenty-five technologies in our sample. Table 4 reports the correlation between the estimates

27More precisely, we censor all observations that are 90% below the peak level of technology usage for the
leading country (after the peak has been attained). This is to allow for some fluctuations in the level of adoption.
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of the adoption margins for the censored and uncensored samples. The correlation between

the adoption lags is .97, while for the intensive margin it is .85. The evolution of the adoption

margins is also robust to controlling for the potential obsolescence of technologies. The rates

of decline of the adoption lags for Western and non-Western countries are virtually the same

as in the baseline.The divergence in the intensive margin is slightly more pronounced than

in our baseline (0.62% vs. 0.54%). Therefore, we conclude that the potential obsolescence of

technologies does not affect the trends in adoption patterns we have uncovered.

Measurement of the intensive margin In our baseline estimation, we identify the inten-

sive margin by removing from the intercept βτ1 the productivity gains arising from the timing

of adoption. This effect operates through the adoption lag, which we subtract according to

(30),

ln âcτ =
βcτ1 − βWestern

τ1

βτ3

+
γ

2
(Dc

τ −DWestern
τ ).

In our theory, correcting for differences in adoption lags in the intercept has a clear interpre-

tation. For the intensive margins to be comparable across countries, they should be computed

as if adoption had started at the same time in all countries. This way, any remaining ver-

tical differences in the resulting corrected diffusion curves can be attributed to differences in

penetration rates of the technology.

However, in the light of the convergence in adoption lags, one might worry that the di-

vergence in the intensive margin that we find is a mechanical result inherited from the trends

in the estimated adoption lags. Alternatively, one can simply report the intercept without

correcting for differences in adoption lags as a less structural benchmark. To address these

concerns, we compute an alternative measure of the intensive margin under the assumption

that the productivity growth of a technology is zero, γ = 0. Note that, in this case, there is

no correction in the intensive margin arising from differences in the timing of adoption. This

variation does not affect the estimates of the adoption lags.

The fifth row in Table 4 shows the correlation between these estimates of the intensive

margin and our baseline estimates. The overall correlation between these two estimates is

.99. The divergence in the intensive margin is also robust to this alternative computation of

the intensive margin. In particular, the time trend on the intensive margin for non-Western

countries is −.42%, compared to −.54% in our baseline estimate.

5 Income Dynamics

In this section, we evaluate quantitatively the implications of the cross-country patterns of

technology diffusion for the evolution of the world income distribution. We focus on three

questions: (i) the model’s ability to generate pre-industrial income differences, (ii) the pro-
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tractedness of the model’s transitional dynamics, and (iii) the model’s account of the Great

Divergence.

5.1 Calibration

To simulate the evolution of productivity growth we use equation (17), which expresses ag-

gregate productivity in terms of the sectoral adoption patterns. This requires specifying the

evolution of the technology frontier, calibrating four parameters and specifying the evolution

of the adoption margins.

We model the evolution of the technology frontier as a one time increase in the growth

rate of the frontier. According to Mokyr (1990) and Crafts (1997), an acceleration in the

technology frontier growth captures well the Industrial Revolution. We assume that prior to

year T = 1765 (year in which James Watt developed his steam engine), the technology frontier

grew at 0.2%.28 This is the growth rate of Western Europe from 1500 to 1800 according to

Maddison (2004). After 1765, the frontier growth rate, χ + γ, jumps to (1 − α) · 2% per

year. This ensures that Modern growth along the balanced growth path is 2%. As previously

discussed, we set α = .3. In our baseline simulation, we split evenly the sources of growth in

the frontier between γ and χ.29 Finally, we calibrate the elasticity of substitution in the final

good production function, 1/(θ− 1), using the average estimates of βτ3, which implies a value

of θ = 1.28.

To specify the adoption margins, which also enter equation (17), we assume that they

evolve continuously between 1765 and 1983 as described by equations (31) and (32). Prior to

1765 and after 1983, the adoption margins remain constant.30 Constant adoption margins at

the end and the beginning of the sample ensure that the economies transition between the two

balanced growth paths described by equation (23).

5.2 Cross-country evolution of income growth

We consider the implications of technology dynamics for the evolution of income growth for

various country classifications. We begin our analysis with the division between Western

and non-Western countries. Then, we divide countries by their income in five quintiles to

characterize the evolution of the world income distribution more finely. Finally, we classify

28Alternatively, we can set, without any significant change to our findings, the beginning of the Industrial
Revolution at 1779, year of invention of the first technology in our sample, the mule spindle.

29From our reading of the literature, it is unclear what fraction of frontier growth comes from increases in
productivity due to new technologies (χ) and new vintages (γ). In Section 4.4 we conduct robustness checks
on this division.

30We select 1983 as our end date because this is the last invention year in our data (the internet). For the
adoption lag, and given that it tends towards zero at the end of the sample, similar results would emerge if we
allowed for a continuing trend. For the intensive margin, and given our finding of divergence, allowing for a
continuing trend would exacerbate the differences between Western and non-Western countries.

24



countries by their continent and study the implications of the adoption trends observed in

each continent for their evolution of income growth.

We start simulating the evolution of output for Western countries and the rest of the world.

As discussed in the calibration section, we feed a (common) one time permanent increase in

frontier growth and the estimated evolutions for adoption lags and the intensive margin for

each group of countries reported in Table 3.

Prior to the adoption of Modern technologies, both groups of countries are in the pre-

Modern balanced growth path. Along the pre-industrial balanced growth path, differences

in productivity are entirely due to differences in adoption levels of the pre-Modern era. We

assume that pre-Modern levels of adoption coincide with the adoption levels that we estimate

for the beginning of our sample. Our estimates from Table 3 imply that the difference between

the average adoption lag in the sample of Western countries and the rest of the world is 49 years

in 1820. The average gap in the (log) intensive margin is 0.39. Using Maddison’s estimates of

pre-industrial growth in Western Europe (0.2%) to calibrate the pre-industrial growth rate of

the world technology frontier, equation (23) implies an income gap between Western countries

and the rest of the world of 90%.31 This is in line with the results from Maddison (2004), who

reports an income gap of the same magnitude.

After the increase of frontier growth in 1765, countries can start adopting Modern tech-

nologies that embody higher productivity. As a result, they increase their productivity growth

and transition to the Modern balanced growth path. We report in Figure 3 the evolution of

growth rates for the 1765-2000 period.32 Figure 3a shows that the model generates sustained

differences in the growth rates of Western and non-Western countries for long periods of time.

In the Western economy, output growth starts to accelerate around 1830, and it reaches the

steady state growth rate of 2% after 1900. The transitional dynamics implied by the model

are very protracted: the half-life of the growth rate is a hundred years. Growth in the non-

Western economy does not take off until approximately 1870. After that, it accelerates at a

slower pace than the average Western economy. By year 2000, it is still 1.5%. As shown in

figure 3b, the resulting gap in growth rates between Western and non-Western economies is

considerable. The average annual growth rate is 0.65 percentage points lower in non-Western

countries over a period of 180 years. The gap peaks around 1913 at 1%. From then on, the

gap declines monotonically until reaching 0.6% by 2000.

Table 6 reports the average growth and growth gaps of our simulation and in the Maddison

(2004) data. The evolution of productivity growth in both country groups traces quite well

31That is, exp(.2% · 49 + .39/(1 − α)) = 1.9.
32In the working paper version (Comin and Mestieri, 2013), we characterize analytically the transition after

a permanent increase in the growth rate of the technology frontier and after changes in the adoption margins.
We show that the path of the growth rate during the transition is S-shaped. We also provide approximate
expressions for the half-life of the system during the transition. We show that the half-life depends on both
adoption margins, and that it is an order of magnitude larger than in conventional calibrations of the neoclassical
model.
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Figure 3: World Income Dynamics, 1820-2000

(a) Output Growth: Western vs. non-Western (b) Difference in Growth Rates

Note: Growth rates of Western countries and the rest of the World obtained imputing the estimated evolution of

the intensive and extensive margins using the baseline calibration. Western countries are defined as in Maddison

(2004).

the data, though the model slightly underpredicts growth during the nineteenth century.

The sustained cross-country difference in growth rates generated by the model accumulate

into a 3.2-fold income gap between the Western countries and the rest of the world from

1820 to 2000. Maddison (2004) reports an actual income widening by a factor of 3.9. Hence,

differences in the technology adoption patterns account for 82% of the Great Income Divergence

between Western and non-Western countries over the last two centuries. When compounding

the increase in the gap with initial income differences in 1820, it follows that differences in

technology imply an income gap between Western and non-Western countries of 6.2 (1.9 · 3.2)

by 2000. This represents 86% of the 7.2-fold gap reported by Maddison (2004).

The simulation does also well in replicating the time series income evolution of each country

group separately. For Western countries, Maddison (2004) reports a 18.5-fold increase in

income per capita between 1820 and 2000. Approximately 19% of this increase occurred prior

to 1913. In our simulation, we generate a 14-fold increase over the same period, and 16% of

this increase is generated prior to 1913. For non-Western countries, Maddison (2004) reports

an almost 5-fold increase, with around 37% of the increase being generated prior to 1913.

Our simulation generates a 4.3-fold increase in the 1820-2000 period with 32% of this increase

occurring in pre-1913. The fact that we underpredict the time series increase in output reflects,

in our view, that we are not accounting for the accumulation of factors of production over this

time period (e.g., human capital), which also contributed to income growth.

Mechanisms at Work We next decompose the mechanisms at work in our simulation:

the acceleration of the technological frontier and the evolution of the two adoption margins.

We start by simulating the dynamics of our model after a common acceleration of the technol-

ogy frontier for both countries, keeping constant the adoption margins at their initial levels.

Figure 5 shows that these initial conditions are an important source of cross-country income

divergence. Longer adoption lags in the non-Western country imply a delay of 80 years to
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Table 6: Growth rates of GDP per capita

Time Period
1820-2000 1820-1913 1913-2000

Simulation Western Countries 1.47% .84% 2.15%
Rest of the World .82% .35% 1.31%
Difference West-Rest .65% .49% .84%

Maddison Western Countries 1.61% 1.21% 1.95%
Rest of the World .86% .63% 1.02%
Difference West-Rest .75% .58% .93%

Notes: Simulation results and median growth rates from Maddison (2004). We use 1913 instead of 1900
to divide the sample because there are more country observations in Maddison (2004). The growth rates
reported from Maddison for the period 1820-1913 for non-Western countries are computed imputing the
median per capita income in 1820 for those countries with income data in 1913 but missing observations
in 1820. These represent 11 observations out of the total 50. We do the same imputation for computing
the growth rate for non-Western countries for 1820-2000. This represents 106 observations out of 145. For
the 1913-2000 growth rate of non-Western countries, we impute the median per capita income in 1913 to
those countries with income per capita data in 2000 but missing observations in 1913. These represent 67
observations out of the total of 145.

start benefiting from the productivity gains of the Industrial Revolution. As a result, the

income gap increases by a factor of 2.3 by year 2000. The transitional dynamics are very

protracted. For example, the half-life of the growth rate of Western countries is 141 years.

The half-life of output normalized by the long run trend is 114 years, which is an order of

magnitude greater than the neoclassical growth model with a conventional calibration, e.g.,

Barro and Sala-i-Martin (2003).

To assess the role of adoption lags in cross-country growth dynamics, we simulate the

evolution of our two economies as in our baseline model, but keeping the intensive margins at

pre-industrial levels (i.e., no divergence). Figure 6a presents the results from this simulation.

It shows that cross-country differences in adoption lags are an important driver of income

divergence during the nineteenth century. By 1900, the income gap between Western and

non-Western countries reaches 2.1, as opposed to 2.6 in the full-blown simulation. Thus,

the contribution of the divergence in the intensive margin to income divergence during the

nineteenth century is rather small. In the twentieth century, the faster reduction in adoption

lags in non-Western countries produces a higher growth rate in non-Western countries. Had the

intensive margins remained constant at the pre-industrial levels, the relative income between

Western and non-Western countries in 2000 would be similar to the level in 1820 and, therefore,

there would not have been a Great Divergence.

To analyze the role of the intensive margin, we simulate the evolution of the two economies

as in our baseline model, but keeping the adoption lags constant at their pre-industrial levels.

Figure 6b presents the dynamics of income growth in each country. In this simulation, the

growth acceleration in non-Western countries starts much later than in the baseline (Figure
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3). This is a consequence of omitting the productivity gains from a reduction in adoption lags

in non-Western countries. Another perspective on this same issue is that the decline in the

intensive margin reduces productivity growth by a magnitude that, initially, is equivalent to

the gains brought by the industrial revolution to non-Western countries.

We also see in Figure 6b that Western countries grow less than in the baseline, especially

during the nineteenth century. This is a reflection of the absence of the productivity gains

brought by the reduction in adoption lags. Furthermore, as shown in the bottom panel of

Figure 6b, the growth gap between the two groups of countries during the nineteenth century

is smaller when we omit the evolution of the adoption lags. Despite that, the growth rate of

non-Western countries falls behind during the first half of the twentieth century. This gap

does not begin to close until the second half of the twentieth century. In this simulation, the

income gap between Western countries and the rest of the world accumulated between 1820

and 2000 is 3.8.

To sum up, the main findings from our simulations are:

1. The model is capable of generating a Great Divergence. Income per capita of Western

countries relative to the rest of the world increases by a factor of 3.2 over the last 200

years. This represents 82% of the actual increase in the income gap observed in the data.

2. Our model generates very protracted transitional dynamics. This is due both to the

effect of adoption lags and to the fact that it takes time for new technologies to become

a significant share of aggregate output. This latter effect is affected by the intensive

margin.

3. Large cross-country differences in adoption lags explain much of the income divergence

during the nineteenth century between Western countries and the rest of the world.

4. The Great Divergence continued during the twentieth century because of the divergence

in penetration rates (i.e., intensive margin of adoption) between Western countries and

the rest of the world.

Implications for the World Income Distribution We replicate the exercise we have

conducted looking at a finer classification of countries by income quintiles. We consider three

years: 1820, 1913 and 2000. At each of these years, we classify countries by income quintiles.

For each quintile and date, we estimate the evolution of the adoption margins as in the baseline

equations (31) and (32).33 This gives a total of 15 evolutions for each of the two adoption

margins. For each year and income quintile, we feed the estimated technology dynamics and

33We conduct the estimation of the evolution using information over the whole sample. The results reported
are robust to restricting the time period to prior to 1913 for the years 1820 and 1913.
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Table 7: Annual Growth rates of GDP per capita by regions

Simulation Maddison
1820-1913 1913-2000 1820-1913 1913-2000

USA & Canada .77% 2.05% 1.63% 1.90%
Western Europe .62% 1.91% 1.29% 2.16%
Africa .26% .75% .36% .90%
Asia .34% 1.37% .49% 1.70%
Latin America .37% 1.28% .59% 1.50%

Note: Annual growth rates of GDP per capita by regions. Simulation results and growth rates from
Maddison (2004). For the missing income per capita values in 1820 and 1913, we impute the minimal
within group income reported in that year.

simulate the income growth between 1765 and the year of consideration. Then, we cummulate

productivity growth to obtain productivity levels, and scale them by the level of the bottom

quintile in each year.

Figure 4 presents the distribution of income generated by the model and the empirical

distribution in the data for 1820, 1913 and 2000. Figure 4a shows that for 1820 our simulation

underpredicts the relative income at the second, fourth and fifth quintiles relative to the first

quintile. This deviation is largest for the top quintile, where our model generates a relative

income of 2.2 compared to 2.9 in the data. For the third quintile, we slightly overpredict

the relative income, 1.7 compared to 1.5 in the data. For 1913, Figure 4b, the model is on

mark for the relative income of the second quintile, slightly overpredicts the relative income

of the third (2.5 vs 1.8) and fourth (3.3 vs 2.9) quintiles, and slightly underpredicts income

at the top quintile (4.5 vs. 5.7). For 2000, Figure 4c, the model is on mark for the second

and third quintiles, and slightly underpredicts the relative income for the fourth (7.7 vs. 9.9)

and fifth (26.1 vs. 27.5) quintiles. In sum, we conclude that the evolution of the world income

distribution implied by the technology diffusion patterns tracks fairly well the actual evolution

of the world income distribution over the last two centuries.

Implications for the Geography of Growth Table 7 reports the results from a similar

exercise after grouping countries by continent. For each continent, we estimate the trends

in the adoption lags and intensive margin and simulate the evolution of productivity growth

since the industrial revolution. This table shows that technology dynamics in each continent

have induced income dynamics that resemble those observed in the data over the last two

centuries. As in the baseline case, the model tends to slightly underpredict the average growth

rates during the nineteenth century. However, the correlation between the actual growth rates

across continents between 1820 and 1913 and those predicted by the model is 0.99. For the

period 1913-2000, the correlation between actual and predicted income growth is 0.94.
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Figure 4: Evolution of the World Income Distribution

(a) World Income Distribution in 1820 (b) World Income Distribution in 1913

(c) World Income Distribution in 2000

Note: Data refers to the world income distribution computed from Maddison (2004) for the corresponding year.

Simulation obtained feeding the diffusion pattern for adoption lags and the intensive margin of the corresponding

quintile to the baseline calibration described in Section 5. Quintile groups are computed for each of the three

years separately.
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Overall, the cross-country evolution of technology adoption patterns can account for a major

part of the cross-country evolution of productivity growth over the last two centuries. This

conclusion is robust to alternative country groupings based on either initial income levels or

on geographical locations.

5.3 Robustness

We conduct three robustness checks to our analysis: (i) using the technology dynamics when

we allow for non-homotheticities in production, (ii) alternative calibrations of γ and χ, and

(iii) interpreting the divergence of the intensive margin as a structural break instead of a

smooth process.

Non-homotheticities in production As shown in Section 4.4, the trends we have iden-

tified for the evolution of adoption are robust to the presence of non-homotheticities in the

demand for technology. Next, we feed these trends in adoption into our model and quan-

tify their implications for cross-country income growth. We find that the productivity gap

between Western and non-Western countries increases by a factor of 2.6 over the period 1800-

2000, which represents 67% of the Great Divergence. We conclude, therefore, that both the

dynamics of technology diffusion and their implications for the evolution of income growth are

robust to allowing for non-homotheticities in demand.

Calibration of γ and χ Our baseline results assumed that the productivity growth after the

Industrial Revolution was equally shared between the productivity growth of new technologies

(χ) and of new vintages (γ). Given the difficulty of calibrating the contribution of these two

sources of growth, we study the robustness of our findings to the relative contributions of

new technologies and new varieties to balanced growth. To this end, we redo our baseline

simulation under two polar assumptions. Figure C.1a depicts the dynamics of productivity

growth when balanced growth comes only from the development of better vintages (i.e., χ = 0),

while C.1b shows the polar case, in which all productivity growth comes from the adoption of

new technologies (i.e., γ = 0).

We draw two conclusions from this exercise. First, the main findings of the paper are robust

quantitatively and qualitatively to the source of long run growth. In particular, the income

gap between Western and non-Western increases by a similar magnitude as in the benchmark

(2.9 when growth comes from γ, 3.6 when it comes from χ, and 3.2 in the benchmark). Second,

the income gap between Western and non-Western countries is larger when growth comes only

from the adoption of new technologies. Intuitively, in this case, for a given technology, all

vintages have the same productivity. Hence, the marginal gains from expanding the range of

varieties for a given technology are decreasing over time. This implies that the gains from
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convergence in adoption lags (i.e., vintages of new technologies being adopted at the same rate

between Western and non-Western countries) are less important in this case.

Trend vs. structural break in the intensive margin In our estimation, we have assumed

that the evolution of the intensive margin follows a linear trend. We analyze an alternative

specification in which the the evolution of the intensive margin is modeled as a structural

break, rather than as a linear function.34 Figure C.2 shows that the key features of the cross-

country evolution of productivity growth are robust to this modeling choice. The magnitude

of the great divergence is relatively similar albeit smaller (increase in the income gap by a

factor of 2.4 vs. 3.2), and the predicted timing of the divergence is very similar to what we

find in our baseline formulation.

6 Conclusions

What accounts for cross-country variation in income growth over the long term? In this paper

we have explored one important factor: differences in the evolution of technology diffusion

over the last two centuries. Using a stylized model of adoption that fits well diffusion curves

for individual technologies, we have estimated two relevant margins of adoption –adoption lags

and the penetration rates– in a panel that covers twenty-five technologies and 130 countries.

Analyzing the cross-country evolution of these adoption margins, we have documented two

distinct trends over the last two centuries. Adoption lags have converged across countries,

while penetration rates have diverged.

To evaluate the significance of the evolution of technology diffusion for productivity growth,

we have simulated the aggregate representation of our model economy after feeding in the evo-

lution of technology uncovered in the data. Our simulations have shown that differences in

technology diffusion patterns account for a major part of the evolution of the world income

distribution over the last two centuries. In particular, differences in the evolution of adop-

tion margins in Western and non-Western countries account for around 80% of the Great

Divergence.

Our findings motivate new questions that we plan to pursue in future research. Proba-

bly the main one is why has the intensive margin of adoption diverged. Future work shall

formulate hypotheses about the nature of the drivers of the intensity of use of technologies

and why these drivers have diverged over the last two centuries. We consider that successful

explanations of current cross-country differences in productivity will have to properly account

for the divergence of the intensive margin of technology. These explorations will complement

our analysis towards a fuller understanding of cross-country income dynamics.

34The the linear model provides a better statistical fit as measured by the R2.
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Additional Figures

Figure 5: Acceleration of the World Technology Frontier

Growth of Western and non-Western countries with only an acceleration of the technology

frontier. Both margins of adoption are held constant.

Figure 6: Role played by the different margins of adoption

(a) Dynamics Generated by Adoption Lags (b) Dynamics Generated by the Intensive Margin
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