Sino-National Intellectual Property Office (SIPO) March 25, 2014, BEIJING, CHINA

Evaluation of Patent as a strategic resource – Chinese perspective

Prof. CHEN, Xiangdong Beihang University Beijing 100191, P. R. China

2014-3-23

Prof.CHEN, Xiangdong, Beihang University, Beijing, 100191, P. R. China

Focus of this report

- Patent data as a more objective source
 - Efficiency of innovation policy (various input)
 - Efficiency of patent system
 - Efficiency of innovative market
 - Efficiency in defining emerging technologies / sectors;
- Patent data as subjective source:
 - To find "innovation" behavior
 - To find productive vs. non-productive patenting behavior
 - To find major operators of different behaviors and related actions with positive vs. negative effect of the system.

2014-3-23

Prof.CHEN, Xiangdong, Beihang University, Beijing, 100191, P. R. China

Which kind of FDI in China:

To lower down the cost

- Local production base focus: Global / regional integration
 - Production (facilities / management / local resources)
 - Technology (process & technical hardware facilities)
 - Overseas market competition (MNEs and regional companies)
- Local market focus:

To catch extra profit Global / regional differentiation

- Products (Designs)
- Technology (engineering / process / integration)
- Local market competition (MNEs and local companies)

3/23/2014

Prof. CHEN, Xiangdong, Beihang University, Beijing, China

Driving forces for national / regional economies

- Foreign direct investment (FDI)
 - Advanced manufacturing technologies
- Local regional production
 - Dynamic market / technology varies
- State owned companies / industries
 - Advanced manufacturing technologies

3/23/2014

Prof. CHEN, Xiangdong, Beihang University, Beijing, China

Topic I: Evaluation of Competitiveness of Overseas Companies in China

- National and Sector level:
- Ownershi
 - Evaluation of patented technologies in different
- Competit
 - Converg owner group, particularly
 - Diverger overseas and local!
 - lestice of relevant setant selection

Evaluation of relevant patent value

2014-3-23

Prof.CHEN, Xiangdong, Beihang University, Beijing, 100191, P. R. China

9

10

Case I – Technical Field Complementary in telecommunication sectors in China

- Word Frequency detection: key words, representing the most important technical areas, are:
 - Multiple access technology,
 - Channel encoding,
 - Digital modulation,
 - Power control,
 - Diversity technique,
 - Multi-user detection,
 - Multi-carrier,
 - Smart antenna,
 - Software radio technologies.

3 Chinese companies, 3 Japanese and Korean companies, and 6 European and the US companies in telecommunication industries are chosen to compare their competitive advantage on technologies in those 9 technical areas.

Prof.CHEN,Xiangdong, Beihang University, Beijiing, China

2014-3-23

Patent pool as an effective blocking entity

- Positive nature:
 - Solution for patent thicket
 - Limited form of open-innovation
- Negative nature:
 - Technological innovation becomes less efficient in larger social scales
- Effective control?

2014-3-23

Prof.CHEN, Xiangdong, Beihang University, Beijing, 100191, P. R. China

Case II – WCDMA patent pool in telecommunication sectors in China

Patent Pools / Non-Pools	Member Firms			
WCDMA Pool	French Telecom (FT) Nippon Telegraph & Telephone (NTT) Fujitsū Kabushiki-gaisha NTT DoCoMo (NTTD) Royal KPN (KPN) SHARP	MITSUBISHI ELECTRIC Siemens AG NEC Corporation Panasonic (Matsushita) SK telecom (SK) TOSHIBA		
Non-pooled Overseas Companies	LG, MOTO, Ericsson, Philips, Qualcomm Inc, Lucent, Nokia, Samsung, Sony			
Non-pooled typical leading companies from Mainland China	Datang, Hua Wei, ZTE Corporation			
Non-pooled institutions from China	Other Taiwan companies (TAIWAN)	Other Mainland China companies (MAINLAND)		

2014-3-23

Prof.CHEN,Xiangdong, Beihang University, Beijiing, China

3

Empirical Measurement – Specialization vs. diversification in ICT sectors in China

- Data: SIPO (1985.1-2011.10)
- 4 major sectors: Patenting volume total: 776294
 - Telecommunication (17 IPC fields, 213571 pieces)
 - Consumer electronics (8 IPC fields, 11785 pieces)
 - Computer and office devices (8 IPC fields, 209430 pieces)
 - Others (19 IPC fields, 241508 pieces).

2014-3-23

Prof.CHEN,Xiangdong, Beihang University, Beijiing, China

Ranking in diversification in technical fields

Top 10 companies in Shannon-Wiener							
Name of the company	Shannon-Wiener Index	Ranking					
Hua Wei	0.769375	9					
Samsung	1.127690	3					
ZTC	0.835938	8					
Matsushita	1.201263	1					
Sony	1.020120	6					
IBM Hong Fujin Precision Industry	0.659502	10					
Royal Philips	1.150038	2					
LG	1.110647	4					
Hong Fujin Precision Industry	0.939918	7					
Toshiba	1.058508	5					

2014-3-23 Prof.CHEN,Xiangdong, Beihang University,
Beijiing, China

2014-3-23

Ranking in diversification in technical Breadth vs. Density

Name of the company	Technology Breadth	Ranking	Technology Density	Ranking
Hua Wei	0.189973	7	1.159027	7
Samsung	0.21789	4	1.224439	4
ZTC	0.212407	(5)	1.248245	2
Matsushita	0.232083	1)	1.285787	1
Sony	0.226771	2	1.189568	(5)
IBM	0.140216	10	0.841512	9
Royal Philips	0.140925	9	0.780833	(10)
LG	0.208227	6	1.160892	6
Hong Fujin Precision Industry	0.169148	8	0.853607	8
Toshiba	0.220013	3	1.236385	3

Prof.CHEN,Xiangdong, Beihang University, Beijiing, China

Topic III: Competition Strategies for Different types of technology innovation

- Two kinds of innovation:
 - Incremental: highly specialized vs. highly diversified
 - Less contributing to Catching Up Economies, however, beneficial to technology spillover and diffusion.
 - Developing Countries: incremental, imitative, and technical labor demand:
 - Technical skill based,
 - Knowledge application, ...
 - Radical (Original Innovation): highly diversified
 - Highly dynamic, discontinue, however, highly accidental.
 - Human resource demand:
 - Highly creative,
 - Highly heterogeneous,
 - Appropriate training system (Chandy and Tellis, 1998)

2014-3-23

Prof.CHEN, Xiangdong, Beihang University, Beijing, 100191, P. R. China

Industrial (sector based) Innovation System

Factors that differ across sector systems

- Pharmaceuticals:
 - · Universities doing research
 - Institutional policy towards IPR
 - Policies supporting targeted R&D
- Auto:
 - Suppliers (both MNCs and local companies)
- Software:
 - · Training organizations and a skilled labor force
 - Venture capital
- Telecommunication equipment:
 - Targeted R&D support policies
 - Public research organizations
- Agro-food:
 - Agricultural research organizations
 - Market institutions
- Semiconductors:
 - Policies supporting targeted R&D

Source: Research findings by Franco Malerba and Richard

Nelson (2011)

Prof.CHEN, Xiangdong, Beihang University, Beijing, 100191, P. R. China 2014-3-23

21

22

"Catching Up" - research from Western scholars

Pharmaceuticals

Successful catch up: Failure to catch up:

Automobiles

Successful catch up: Korea Catching up: China and Brazil

Software

- Catching up in waves:

First wave: India, Ireland, Israel Second wave: China, Philippines

Russia, Eastern Europe, Brazil, Argentina, Mexico Third:

Telecommunication equipment fixed and wireless

Successful catch up: China, Korea Failure to catch up: India, Brazil

Agro- food:

Catching up with exports: Costa Rica in Coffee Brazil in Soybean

Transformation of the sector: China in vegetables Source: Research findings Nigeria in cassava by Franco Malerba and Richard Nelson (2011)

Semiconductors

Successful catch up: Korea, China Taiwan Catching up: China Mainland, Malaysia

Prof.CHEN, Xiangdong, Beihang University, Beijing, 100191, P. R. China 2014-3-23

"Next generation of IT"

 New generation of mobile communication, next generation of internet and integration of three networking, subject-related networking, cloudy computing, larger scale integrated circuits, new displays, and high end software and service facilities and new types of service industries.

2014-3-23

Prof.CHEN,Xiangdong, Beihang University, Beijiing, China

Key technologies in New Generation of Telecommunication System

- Three layers:
 - Cloudy computing application in communication network;
 - Short distance telecommunication technologies;
 - 4G Key technologies:
 - Wireless link enhancement technology, Radio resource management technology, Networking technologies, and The key common technology.

2014-3-23

Prof.CHEN,Xiangdong, Beihang University, Beijiing, China

25

LTE related competition

- LET (Long Term Evolution) is a group of technologies between 3G and 4G (or 3.9G), whether or not future standard, not yet decided.
- Candidate solutions (patent pool initiation):
 - TD-LTE-Advanced, suggested by Chinese companies
 - 3GPP by Japanese, Korean, and European industrial standard organizations;
 - IEEE, by North American standard organization
 - 6 in total, primarily LTE and 802.16m (Wimax)

2014-3-23

Prof.CHEN,Xiangdong, Beihang University, Beijiing, China

Comparison of the key technology areas and market in China

Classification of technologies	CNPAT	%	WPI	%
T1 Wireless link enhancement technology,	10096	39.45%	29953	40.48%
T2 Radio resource management technology,	8759	34.22%	24061	32.52%
T3 Networking technologies	4331	16.92%	12688	17.15%
T4. The key common technology.	2408	9.41%	7291	9.85%
Total	25594	100%	73993	100%

Source: edited from New generation of telecommunication technologies in patents, by Yang and Zhang, <Science & Technology Management Research> (in Chinese), No. 20, 2013, Pp 174 – 190.

2014-3-23

Prof.CHEN,Xiangdong, Beihang University, Beijiing, China

27

Comparison of the key technology areas and market in China

Source: edited from New generation of telecommunication technologies in patents, by Yang and Zhang, <Science & Technology Management Research> (in Chinese), No. 20, 2013, Pp 174 – 190.

2014-3-23

Prof.CHEN,Xiangdong, Beihang University, Beijiing, China

Empirical investigation – Patent value in telecommunication sectors in China

- → Patent value / quality measures:
 - Citation (backward citation / forward citation)
 - Patent numbers, knowledge contents (citation), and R&D Input, are some typical influencing factors on investment by investors over those listed firms (Hirschey and Richardson, 2004)*
- → However, this is knowledge / technology diffusion based quality measure:
 - Social value: technology spillover / technology diffusion through licensing, adoptions, and protected productions.
 - Private value: may or may not be relevant to its social value
 - * Hirschey and Richardson (2004), Are scientific indicators of patent quality useful to investors? Journal of Empirical Finance, No. 11, Pp91-104.

2014-3-23

Prof.CHEN,Xiangdong, Beihang University, Beijiing, China

29

http:www.buaa.edu.cn

Function change in patent system?

- Where is the largest part of patent value?
 - Production as private and social value
 - Knowledge diffusion as mostly social value
 - Purely private value via legal actions, patent bubble?
 - Strategic patenting / patent portfolio for better control / blocking premium, patent bubble?
 - Policy driven for non-market performance premium, patent bubble?

2014-3-23

Prof.CHEN, Xiangdong, Beihang University, Beijing, 100191, P. R. China

Patent usage in European countries

	Internal use	License	Cross license	License and adoption	Blocking others	Sleeping (non-use)			
	Distributions	on the following are industries based, investigation number =7711)							
Electrical engineering	49.2	3.9	6.1	3.6	18.3	18.9			
Instruments	47.5	9.1	4.9	4.3	14.4	19.8			
Chemical & Pharmaceutical	37.9	6.5	2.6	2.5	28.2	22.3			
Technique	54.6	7.4	2.0	4.9	15.4	15.7			
Mechanical	56.5	5.8	1.8	4.2	17.4	14.3			
Total	50.5	6.4	3.0	4.0	18.7	17.4			
	Distributions of	n the following are	size and nature based,	investigation number	= 7,556				
Larger sized companies	50.0	3.0	3.0	3.2	21.7	19.1			
Medium sized companies	65.6	5.4	1.2	3.6	13.9	10.3			
Smaller companies	55.8	15.0	3.9	6.9	9.6	8.8			
Private institutions	16.7	35.4	0.0	6.2	18.8	22.9			
Public research institutions	21.7	23.2	4.3	5.8	10.9	34.1			
Universities	26.2	22.5	5.0	5.0	13.8	27.5			
Other government institutions	41.7	16.7	0.0	8.3	8.3	25.0			
Others	34.0	17.0	4.3	8.5	12.8	23.4			
Total	50.5	6.2	3.1	3.9	18.8	17.5			

Source: Giuri, P., M. Mariani, S. Brusoni . Inventors and invention processes in Europe: Results from the PatVal-EU survey[J]. Research Policy. 2007, 36(8): 1107-1127

y, 2007, 30(8). 1107-1127 Prof.CHEN,Xiangdong, Beihang 2014-3-23 University, Beijiing, China

31

Patent trolls / Patent Sharks

- NPE (Non Practice Entities):
 - AT&T was sued 54 times in a year
 - Google, 43 suits
 - Verizon, 42
 - Apple, 41
 - Samsung and Amazon, 39 each
 - Dell, and Sony, 34 each,
 - Huawei, 32,
 - Blackberry, 31
- NPEs sued more than 4800 times With 2600 companies, 6 times higher than in 2008.

Prof.CHEN, Xiangdong, Beihang 3-23 University, Beijing, 100191, P. R. China

32

2014-3-23

Survival Rate / Life Cycle – Private Value based

- Legal effect:
- Renewal based information private value
 - Lanjouw and Schankerman (1999, 2001), Lanjouwd and Lerner (2001), Kingston (1995, 2001), Bessen (2008, 2009), ...

Evaluation of patenting behavior / "Innovation" behavior through patent data!

2014-3-23

Prof.CHEN,Xiangdong, Beihang University, Beijiing, China

Payment level in China's Patent System

	1-3 Yr	4-6 Yr	7-9 Yr	10-12	13-15	16-20
Duration				Yr	Yr	Yr
Annual						
Payment						
(RMB Yuan)	900	1,200	2,000	4,000	6,000	8,000

 Note: payment due is nominate number, without any consideration of deduction policy.

2014-3-23

Prof.CHEN,Xiangdong, Beihang University, Beijiing, China

37

Patent Value Comparison with Different Owners (Source Countries) (against level by Chinese owners)

. •		•		•
Expired: different time zone	U.S.	Japan	E.U.	Other Countries
25%	0.9	1.7	0.9	0.9
50%	1.6	2.3	1.5	1.7
75%	4.8	4.4	2.3	2.7
90%	4.5	5.6	4.0	2.4
95%	7.2	6.2	6.4	5.1
99%	4.0	3.1	3.2	3.0
Mean	2.4	2.2	2.2	1.9

2014-3-23

Prof.CHEN,Xiangdong, Beihang University, Beijiing, China

Relative value to average (patent value in different sectors)

Expired & survival: different time zone	Telecommunica. & IT sectors	Biotechnologies	Environmental technologies	Material technologies	Mechanical technologies
25	100.75%	103.30%	103.74%	94.70%	96.35%
50	101.01%	56.15%	56.30%	49.60%	93.54%
75	50.91%	54.39%	107.90%	44.16%	90.19%
90	48.99%	54.73%	54.65%	39.05%	85.27%
95	94.13%	78.86%	78.30%	74.35%	123.14%
99	132.63%	54.50%	86.83%	47.52%	93.77%

2014-3-23

Prof.CHEN,Xiangdong, Beihang University, Beijiing, China

Schumpeterian I vs. Schumpeterian II							
Notion	Schumpeterian I	Schumpeterian II					
Source	Theory of Economic Development (1912)	Capitalism, Socialism and Democracy (1942)					
Definition	Nelson and Winter (1982)	In Keith Pavitt's words					
Character	"Creative Destruction", original, less concentration, smaller economic scale, un-stable competitive position, easy market entry – highly diversified knowledge	Accumulative technology development, highly concentrated, larger company dominated, stable competitive position, difficult market entry. highly converging & path dependent.					
Evolution	Schumpeterian Innovation Model varies along with different time period in economic development						
Typical Sectors	Mechanical industries Pharmaceutical sectors	Semiconductors (1990's) and micro-processor, DRUM, (1950-1990's)					

Knowledge and technology innovation

- Function of Modern Universities
 - University-Industry consortium
 - University dominated industrial innovation
 - National Educational System
- Evaluation of knowledge innovation productivity of universities / universityindustrial consortium.
- Evaluation of innovation function of university

2014-3-23

Prof.CHEN, Xiangdong, Beihang University, Beijing, 100191, P. R. China

41

Timely based obstacles in international technology transfer

- Entrepreneurial: company perceptions
- Government: Policy environment
- Market: acceptance by major customers
- Political economic: between countries / business groups
 patent pool.
- Technical with political: standardization and patent pool.

2014-3-23

Prof.CHEN, Xiangdong, Beihang University, Beijing, 100191, P. R. China

Function of University / Higher Education: Major Argument

- Knowledge generation vs. knowledge transfer
- Question of focus:
 - Universal interests vs. market interests
 - Academic background based research interests
 - Engineering and technology frontier (National Innovation System)
 - Emerging strategic technologies (National Innovation System)
 - Local / regional solutions (regional innovation system)
 - Sector based technical competition in company level.

2014-3-23

Prof.CHEN, Xiangdong, Beihang University, Beijing, 100191, P. R. China

Prof.CHEN, Xiangdong, Beihang University, Beijing, 100191, P. R. China

2014-3-23

Important signs of Chinese universities

- Institutions / Input / Output
 - R&D institutions within universities
 - Licensing out
 - Start Up's & URE (URSMEs / UR high tech SME's)
 - R&D collaborations between U and I
 - Industry ordered / out sourcing:
 - Industry based Internationalization of R&D

2014-3-23

Industry contracted fund for university R&D

Table 1. Research Fund from Industries (2006-2010) 0.1 billion RMB

	2006		2007		2008		2009		2010	
	Total	Industr.	Total	Industr	Total	Industr	Total	Industr	Total	Industr.
Total	45.73	41.44%	54.54	38.43%	65.45	37.31%	72.77	37.86%	94.03	33.91%
"211" Universities &	32.36	42.03%	38.84	38.08%	46.46	36.10%	50.86	37.46%	67.93	32.59%
Other Universities	13.17	40.32%	15.46	39.46%	18.66	40.51%	21.4	39.11%	25.52	37.64%
Collegess	0.21	19.05%	0.24	29.17%	0.33	30.30%	0.51	25.49%	0.57	24.79%
MOE universities	24.16	43.05%	29.15	40.41%	34.76	37.89%	38.34	38.89%	52.19	32.09%
Regional univ.	16.09	39.34%	18.66	38.96%	22.99	39.02%	26.17	38.14%	31.27	36.55%
Sythetic Univ.	14.6	37.40%	17.71	33.37%	21.29	31.89%	23.2	33.58%	32.17	28.05%
Engineering Univ.	24.38	51.35%	29.15	47.99%	34.37	47.72%	37.92	48.34%	46.7	45.17%

Source: <Statistical Yearbook on Higher Education University S&T>, 2007 - 2011.

Prof.CHEN, Xiangdong, Beihang University, Beijing, 100191, P. R. China

17

What drives company / university patent records up?

Market competition

- Tangible market competition
- Financial market
 - Capital market
 - Ventral capital market

Policy encouragement

- Direct: patent records as innovation output measures;
- Indirect: patent records as company image ...
- University role under NIS

2014-3-23

Prof.CHEN, Xiangdong, Beihang University, Beijing, 100191, P. R. China

Patent value differences: Company vs. higher education inst.

Value against average by different organizations (%)

Organization Patent value	Larger firms	SMEs	Universities (985) and CAS	Universities (Non – 985, but 211)	Universities (Non-211)
Value in average	208.5%	74.0%	75.6%	72.8%	69.1%

2014-3-23

Prof. CHEN, Xiangdong, Beihang University, China

Major topics

- Evaluation of patent value for more objective oriented issues
- Evaluation of patent value for more subjective (behavior) oriented issues.
 - Individual companies, technology speculators
 - Group of companies, technology blockers
 - Upper stream (knowledge innovation) entities (e.g. universities?
 - Policy effectiveness vs. policy speculators (input output?)

2014-3-23

Prof.CHEN, Xiangdong, Beihang University, Beijing, 100191, P. R. China

51

Further collaboration

- Thank you for your kind attention!
- Looking forward to future possible collaboration!
 - Please Contact:
 - chenxdng@buaa.edu.cn
 - chenxdng@126.com
 - chenxdng@vip.sina.com

2014-3-23

Prof.CHEN, Xiangdong, Beihang University, Beijing, 100191, P. R. China