Antibiotic Resistance – Today's Challenges, Tomorrow's Solutions

Anthony D. So, MD, MPA

Director, Program on Global Health and Technology Access

Duke University

Director, Strategic Policy Unit

ReAct--Action on Antibiotic Resistance

Medical Innovation—Changing Business Models

Geneva, Switzerland 05 July 2013

Antibiotics Success Story

Table 3. Antibiotic-Mediated Mortality Reductions for Specific Infections

Disease	Pre-Antibiotic Mortality Rate	Antibiotic Mortality Rate	Change in Mortality
Community Pneumonia [53]	~ 23 %	~ 7%	-16%
Nosocomial Pneumonia [54]	~ 60 %	~ 30%	-30%
Bacterial Endocarditis [112–115]	~ 100%	~ 25%	-75%
Bacterial Meningitis [116–117]	>80%	<20%	-60%
Skin Infection [55, 118]	~ 11%	<.5%	-10%
By comparison, treatment of myocardial is	-3%		

Source: Infectious Diseases Society of America (IDSA). Combating Antimicrobial Resistance: Policy Recommendations to Save Lives. *Clinical Infectious Diseases* 2011; 52 (S5): S397-428.

Antibiotic Resistance is a Global

Threat

Figure 17: Spread of Antibiotic-Resistance Bacteria (ARB)x

Costs

North Arnerica

- USA: ARB dauses majority of 99,000 deaths/yr from infections agained in hospitals.**
- USA: Health care costs of ARB are US\$21-34 bn/vr.56

Europe

- EU: ARB costs society ~ €1.5 bn/yr & 600 million days of lost productivity.⁵⁹
- Russia: ARB a major concern⁶⁰ with 83.6% of families imprudently use antibiotics at home.⁶¹

Middle East & North Africa

- Egypt: 38% of blood infections contracted by young cancer patients are from ARB.⁵⁵
- Israel: ARB found fatal in ~ 50% cases when resistant to our strongest antibiotics.⁶³

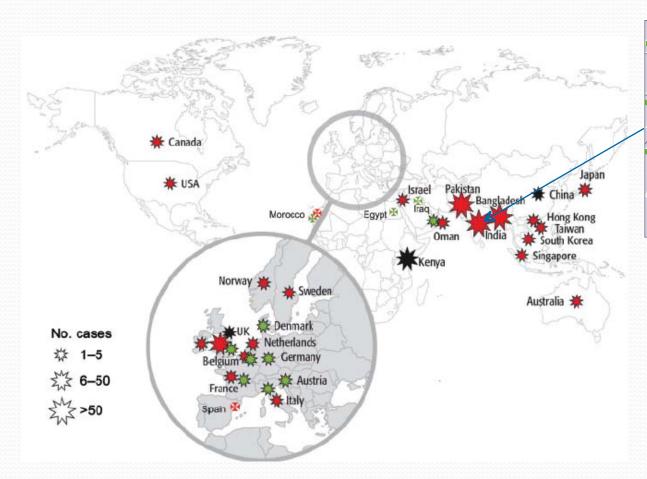
Asia

- Thailand: >140,000 ARB infections/yr and >30,000/yr patients die; 2 bn in productivity losses/yr.⁴⁹
- Japan: Extensive levels of ARB found in Tokyo's urban watershed.⁵⁰
- China: Extreme over-prescription of antibiotics⁵¹ and rapid growth rate of ARB.³²
- India: Within 4 years (02-06) ARB went from being resistant to 7, to 21 drugs.³³
- Vietnam: Farming practices contributing to spread of ARB through environmental contamination.⁵⁴
- Pakistan: 71% of infections in newborns are from ARB.⁵⁵

Growing Resistance

Shortages

South America

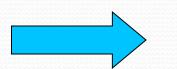

- Peru, Bolivia: >51% of hospital infections caused by ARB.⁵⁷
- Brazil: Rates of ARB are up >60%.58

Sub-Saharan Africa

- Tanzania: Death rate of ARB infected children are double that of malaria.
- Nigeria: Rapid spread of ARB that came to Africa from Asia.⁶²

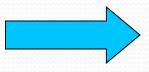
Source: *Adapted from* Howell L, ed. "The Dangers of Hubris on Human Health," *Global Risks Report 2013*, 8th ed. Geneva, Switzerland: World Economic Forum Insight Report, 2013, page 30. Available at: http://www3.weforum.org/docs/WEF GlobalRisks Report 2013.pdf

Spread of NDM-1 Producing Enterobacteriaceae

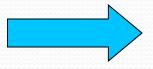

New Delhi sewage sites

Source: Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. *Lancet Infectious Disease* 2011; 11: 355-62.

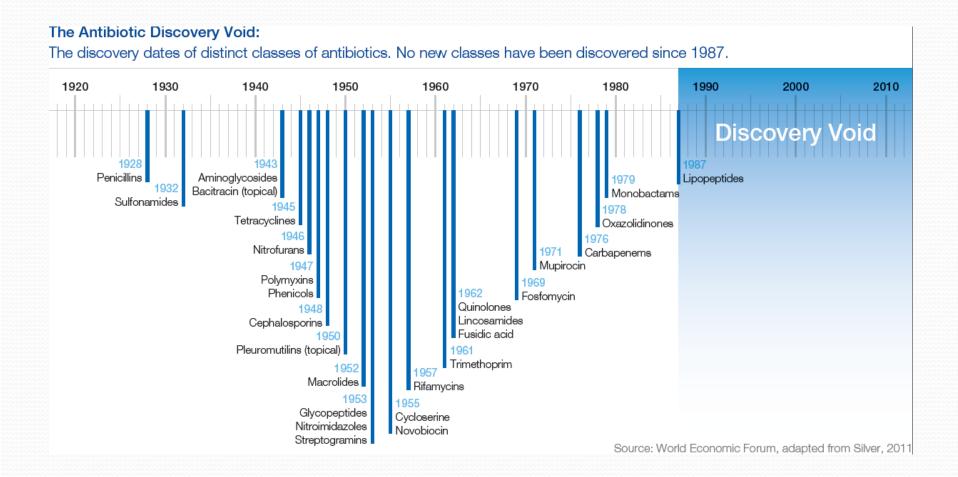
Source: Nordmann P, Naas T, Poirel L. Global Spread of Carbapenemase-producing *Enterobacteriaceae*. *Emerging Infectious Diseases* 2011; 17 (10): 1791-1798.


Framing Technology Policy Options

 Decrease need for antibacterial use


Vaccines

Improve the rational use of antibacterials


Diagnostics

 Accelerate the development of new antibacterials

Drugs

Few Novel Classes of Antibiotics

Source: *Adapted by World Economic Forum from* Silver LL. Challenges of Antibacterial Discovery. *Clinical Microbiology Reviews* 2011; 24 (1): 71-109. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3021209/figure/f1/

Faltering Pipeline for Antibiotics

EMA-ECDC-ReAct analysis

Identified **90** antibacterials against organisms of public health importance (**66** new active substances)

27 with new targets or new mechanisms of action

15 are systemic

8 against Gram-

2 act on new targets, but none with new mechanisms of action

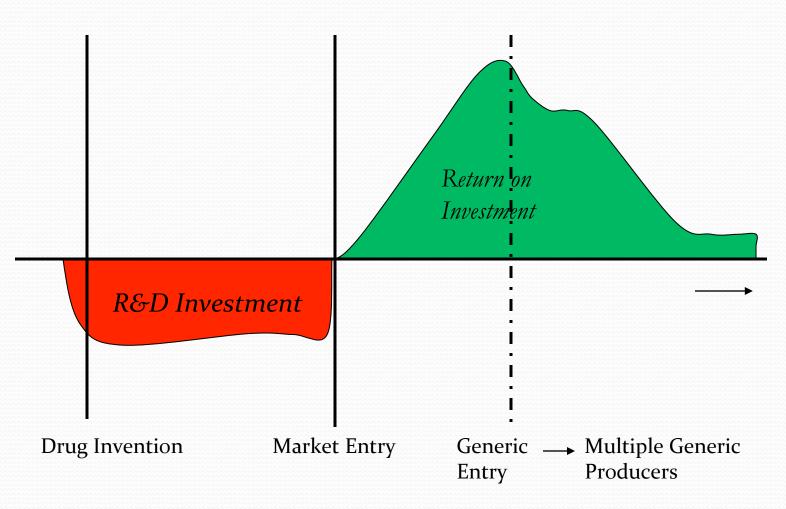
Source: Freire-Moran, et al. Critical shortage of new antibiotics in development against multidrug-resistant bacteria—Time to react is now. *Drug Resistance Updates* 2011; 14: 118-124. Available at http://www.sciencedirect.com/science/journal/13687646/14/2

Scientific bottlenecks: Upstream science

	HTS to Lead	Lead optimization to Development Candidate (DC)	n	DC to Ph 1 start	Ph 1 to Ph 2 start	Ph 2 to Ph 3 start	Ph 3 to File	File to Launch
	2yr	3-5yr		1yr	1yr	2yr	2yr	1yr
*Novel Antibacts:	7%	50%		50%	33%	50%	67%	25%
*ndustry average (all therapeutic areas)	80%	85%	<u> </u>	69%	54%	34%	70%	91%

Source: David Payne, GlaxoSmithKline, Proceedings of "Global Need for Effective Antibiotics---Moving toward concerted action," Uppsala Sweden. September 6-8, 2010. Available at http://www.reactgroup.org/uploads/publications/presentations/workshop2.pdf

^{*}Hit to Phase 2 starts based on GSK data. Phase 2 and Phase 3 success based on Centers for Medicines Research (CMR) 2003 averages for antibacterials (likely based on agents from established classes). *Paul, et al (2010). Nature Reviews Drug Discovery 9: 203-214.


Financial Bottlenecks: Net Present Value, by Drug Class

Project therapeutic class Risk-adjusted NPV x \$1,000,000

Musculoskeletal	1,150
Neuroscience	720
Oncology	300
Vaccines	160
Injectable antibiotic (Gm+)	100
Oral contraceptive	10

Source: Projan SJ. Why is Big Pharma getting out of antibacterial drug discovery? *Current Opinion in Microbiology* 2003; 6: 427-430.

Market Life Cycle of a Drug

Reengineering the business model

- *Tiering*: Preferential treatment for one segment of the market over another
- Pooling: Lowering transaction costs by bringing R&D inputs or outputs together
- Push: Decrease R&D Cost
- *Pull*: Ensure return on investment (ROI)

Tiering and the Bottom Billion

Global Burden of Disease by Country Income level, 2008

World Bank Income Level	Trypanosomiasis	Leishmaniasis	Tuberculosis	Lower Respiratory Infections
Non-low income	13,812 (25%)	17,923 (70%)	939,424 (70%)	2,417,430 (70%)
Low income	40,477 (75%)	8,057 (30%)	402,347 (30%)	1,045,864 (30%)

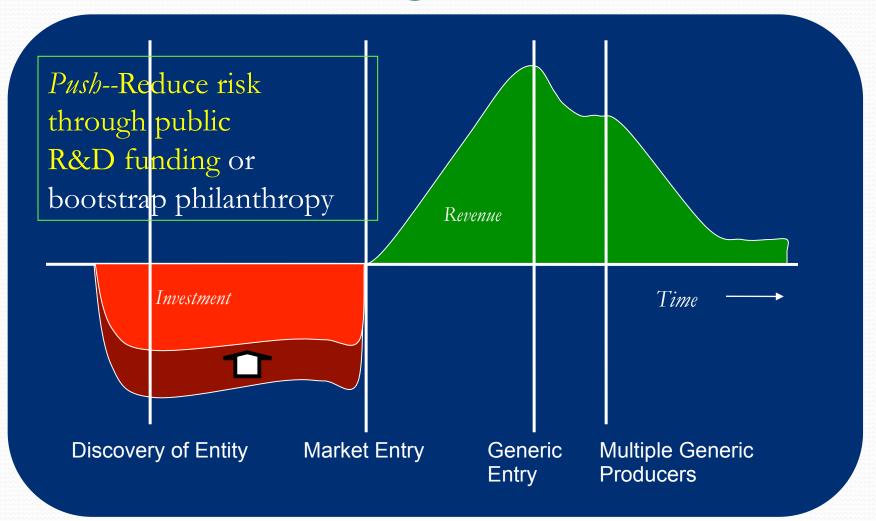
Source: Data from "Cause-specific mortality, 2008: World Bank income group by country," Global Health Observatory Data Repository. Geneva, Switzerland: World Health Organization, 2011.

Available at: http://www.who.int/entity/gho/mortality_burden_disease/global_burden_disease_DTHInc_2008.xls

Strategic Collaboration— What If...We Pooled

Compound libraries

• GlaxoSmithKline open collection of 13,533 compounds inhibiting malaria for public R&D.


Clinical trial data

• Coalition Against Major Diseases pooled control arms of clinical trials on Alzheimer's disease.

Combination treatments

• Global Alliance for TB Drug Development, Gates Foundation and the Critical Path Institute work to shave years off the regulatory approval of TB combination regimens.

Push – Diminishing R&D Risks

Pooling and Push: Europe's Innovative Medicines Initiative(IMI)

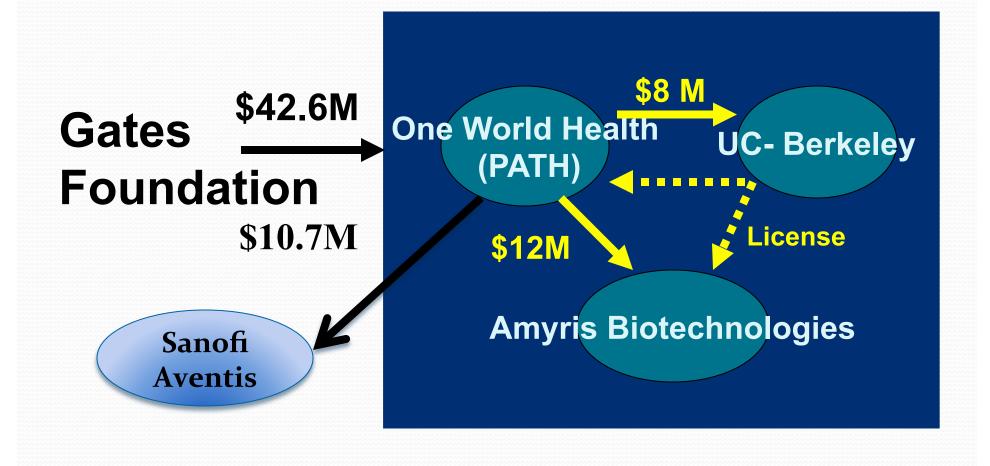
New Drugs 4 Bad Bugs (ND4BB) Program

Sharing data on successes/ failures of screenings & compounds

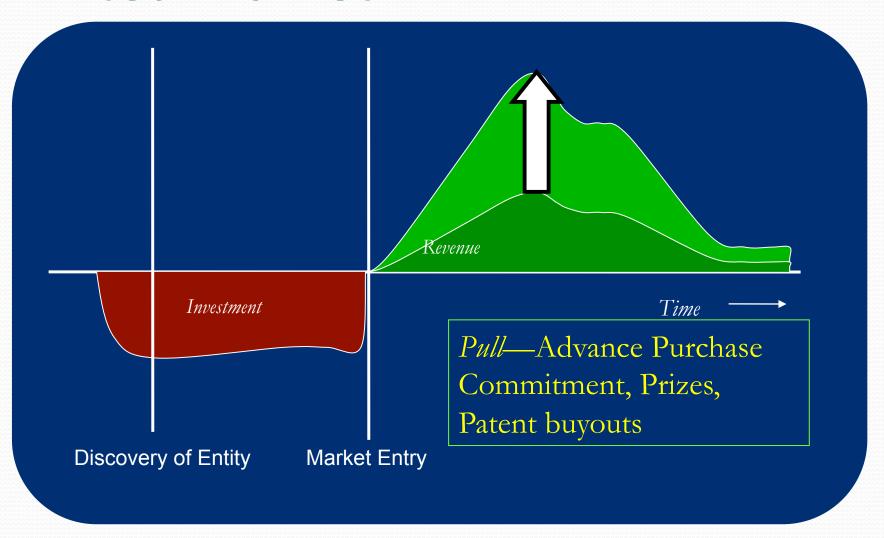
Sharing best practices for antibiotic R&D

Co-Develop Lead Candidates

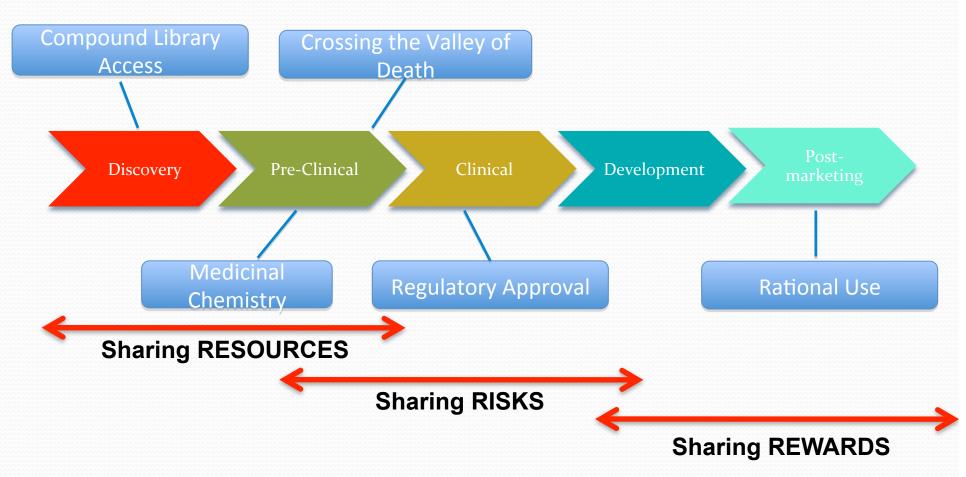
Clinical Trials
Consortium


Grants for R&D funding

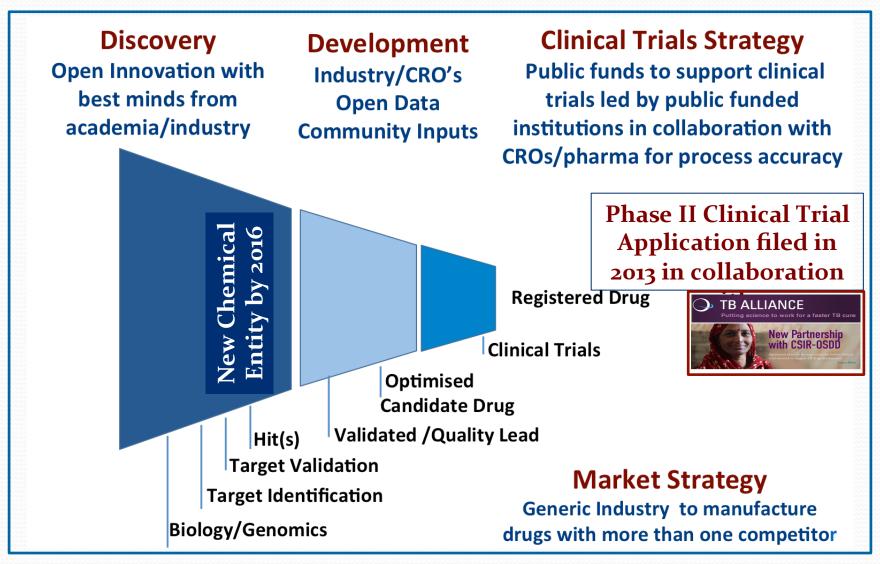
Pooling


Push

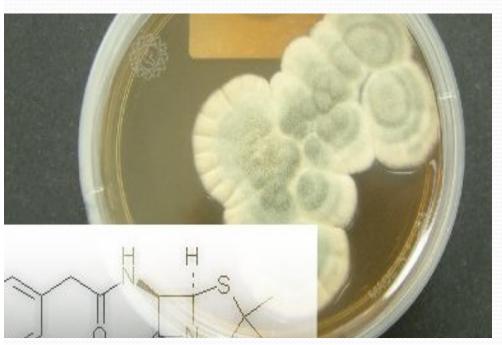
Source: Based on Innovative Medicines Initiative Website. Available at: http://www.imi.europa.eu/content/mission (Accessed o2 Jul 2013)


Push - Leveraging Public Sector Investments: Microbial Synthesis of Artemisinin

Pull – Reducing Risk of Resourcelimited Market


Reengineering R&D Value Chain – The 3Rs

Source: So AD, Ruiz-Esparza Q, Gupta N, Cars O. 3Rs for innovating novel antibiotics: sharing resources, risks, and rewards. *British Medical Journal* 2012; 344:e1782.


 $A vailable\ at:\ http://www.bmj.com/content/344/bmj.e1782? ijkey=TXeqN1NcCsPpzC1\&keytype=refull for the content of the conte$

India's Open Source Drug Discovery Initiative: The 3Rs at Work

Source: Zakir Thomas, Open Source Drug Discovery Initiative, India's Council on Scientific and Industrial Research, 2013.

Back to the Future

- 1929: Fleming's discovery of penicillin
- 1940: Florey and Chain's crucial experiment
- 1941 on: Committee on Medical Research assists to scale up penicillin production
- 1944: Twenty-one firms produce penicillin