

CWS/8/2
原文：英文

日期：2020 年 10 月 20 日

产权组织标准委员会（CWS）

第八届会议

2020 年 11月 30日至 12月 4日，日内瓦

关于网络应用程序接口新标准的提案

国际局编拟的文件

导 言

1. 在 2017 年 5 月 29 日至 6 月 2 日举行的第五届会议上，产权组织标准委员会（CWS）确定了网络

服务是标准化的重要领域之一（见文件 CWS/5/15 第 2 段）。标准委员会在会议期间同意设立第 56 号

任务，以便 XML4IP 工作队能够就此标准草案开展工作（见文件 CWS/5/22 第 92 段）。

2. 在 2018 年 10 月举行的第六届会议上，标准委员会同意标准草案应包含两个范例的应用程序接

口（API）规范：第一个受五局
1
所开发的四个一站式文档系统（OPD）API 之一的启发，第二个则提供

符合产权组织标准 ST.27 的专利法律状态事件信息获取网络服务。

3. 2019 年 3 月在大韩民国首尔举行的 XML4IP 工作队会议期间，XML4IP 工作队决定，该新 API 标

准不在 XML4IP 工作队的任务范围之内，并提议应设立一个新工作队，以了解知识产权领域的 API 开发

实践。

4. 在 2019 年 7 月举行的第七届会议上，标准委员会同意将第 56 号任务重新分配给为管理这一新

标准制定所设的新工作队，即 API 工作队（见文件 CWS/7/29 第 51 段）。因此，CWS 还批准了第 56 号

任务的新说明如下（见文件 CWS/7/29 第 50 段）：

1 五局包括欧洲专利局（欧专局）、美国专利商标局（美国专商局）、中国国家知识产权局（国知
局）、日本特许厅（JPO）和韩国特许厅（KIPO）。

CWS/8/2

第 5 页

“为支持机器对机器通讯的数据交换编写建议，重点是：（i）方便开发访问知识产权资

源的网络服务；（ii）提供业务词汇表和适当数据结构；（iii）资源的统一资源标识符

（URI）命名约定；以及（iv）提供实施网络服务的业务案例。”

5. 在第七届会议上，标准委员会审议了 API 工作队提交的关于 API 标准的工作草案，并确定在提

供最终草案前需改进以下项目（见文件 CWS/7/4 第 11 至 15 段）：

− 在主体部分纳入网络 API 响应的 XML 和 JSON 范例；

− 在主体部分建议设计网络服务时最好采用 RESTful 架构；

− 确定附件一，条件是所提供的设计规则在标准委员会就提供合规等级的新方法达成一致后

得以稳定下来；

− 确定附件二，即 RESTful API 业务领域和技术词汇表范例；

− 确定或删除附件三，即 SOAP API 词汇表范例；

− 确定构成附件四的两个范例，并选出一个构成附件五的范例；以及

− 制定标准以确定 API 开发应先撰写合同（规范）还是先编写代码，以及该信息是否应构成

标准本身的一部分。

此外，标准委员会要求工作队提供新标准的最终草案，供其在第八届会议进行审议（见文件 CWS/7/29

第 53 段）。

6. 加拿大知识产权局（CIPO）和联合王国知识产权局（UKIPO）被指定为新 API 工作队的共同牵头

人。该工作队约有 50 名成员，自工作队设立以来已举行了六次虚拟会议，目的是审查新拟议标准草案

并提出改进建议。经过这些在 wiki 和在线会议上的讨论，已对该草案作出了若干修改，下文第 12、

13、14 段对此进行了进一步具体讨论。本文件由国际局在与 API 工作队共同牵头人的密切合作下

编拟。

拟议的新产权组织标准

7. 在第 56 号任务的框架内，API 工作队以及之前的 XML4IP 工作队编拟了一套网络 API 开发建议指

南，以处理、交换和传播知识产权数据，并将转录于本文件附件的新产权组织标准最终提案提交至标

准委员会供其审议。

8. 国际局提议该新产权组织标准采用下列名称：

“产权组织标准 ST.90——关于使用网络 API（应用程序接口）处理和交流知识产权数据

的建议”

目 标

9. 拟议标准意在就 API 开发提供建议，以方便在网络中统一处理和交换知识产权数据。该标准的

主要目标是提供以下益处：

− 通过建立统一的网络服务设计原则确保一致性；

− 提升网络服务合作伙伴之间的数据互用性；

− 通过统一的设计鼓励再次使用；

− 通过相关 XML 资源中明确界定的命名空间政策加强各业务部门之间数据命名灵活性；

− 加强安全的信息交流；

CWS/8/2

第 5 页

− 提供可供其他组织使用的适当内部业务流程作为附加值服务；以及

− 整合内部业务流程，并将其与业务伙伴进行动态链接。

范 围

10. 虽然有许多为 API 开发人员提供指南的现有建议，但产权组织网络 API 标准的目的是向知识产

权局和/或为这些知识产权局和相关组织工作的开发人员提供 API 开发具体指南，这些网络服务处理或

传播知识产权数据。

11. 希望通过使用这一拟议标准，能够以统一方式简化和加快网络 API 开发，并提升网络 API 的互

操作性。

改进标准草案

12. 自提交上一份工作草案供标准委员会第七届会议审议以来，对标准草案的主体部分作了以下改

进，新增案文以下划线标出：

(a) 对标准的主体部分进行了基本的编辑改动，例如改进格式和更正所提供规则的编号；

(b) 提供了编者按作为新的第 6 段，以进一步澄清标准的目的。该段内容如下：

“本标准文件中提供的 URL 仅供举例使用，并非活动地址。”；

(c) 收到知识产权局的反馈后，将设计规则 [RSG-73]和 [RSG-148]由“须实施”（MUST

implement）降级为“应实施”(SHOULD implement)；

(d) 增加了新的第 50 段和设计规则[RSG-67]，建议各局公布其 API 生命周期管理策略。设计

规则[RSG-67]内容如下：

“开发人员应公布 API 生命周期策略，以帮助用户了解一个版本的存续时长。”；

(e) 对设计规则[RSG-64]进行了修正，建议进行标头版本管理，并举例说明，这条规则目前内

容如下：

“网络 API 应．支持统一的服务版本管理方法，可以使用 URI 进行版本管理，例如

/api/v1/inventors，或用标头，例如 Accept-version: v1，又或用媒体类

型，例如 Accept: application/vnd.v1+json。不应．．使用查询字符串进行版本管

理。”；

(f) 已对设计规则[RSG-91]进行修正，为相关 ID 标头提供了所建议名称。这条规则的新案文

内容如下：

“每个被记录的错误都应．拥有独特的相关 ID。应使用自定义 HTTP 标头，并且应．为其命名

相关 ID。”；

(g) 在主体部分增加了第 98 段，以具体说明在开发 API 时最好使用 REST 架构。仅出于完整性

考虑提供关于 SOAP 的章节；以及

(h) 更新了主体部分第 3 段，以提供对 RMM 的定义，内容如下：

“‘RMM’指的是衡量 REST API 成熟度的理查德森成熟度模型，分值从 0 到 3。”

https://www.wipo.int/edocs/mdocs/classifications/zh/cws_7/cws_7_4-annex1.docx

CWS/8/2

第 5 页

13. 除了上文第 12 段所述拟议标准主体部分的改动之外，还对拟议标准主体部分的附件作出了如下

修正：

(a) 附件一定稿：附件一由四个表格组成，列出了为达到该标准的特定合规等级所须满足的条

件；

(b) 附件二定稿：附件二提供了开发 RESTful API 的业务和技术词汇表实例，其中包括取自附

件三（原附件四）中范例的参数示例。国际局还提供了一份编者按，内容如下：

“API 工作队将在未来的修订中提供更全面的 REST IP ST.96 列表和 JSON 词汇表的链

接，并将随着知识产权要素和词汇的发展，持续对其进行动态维护。”；

(c) 删除附件三：工作队决定该附件不应成为本标准的一部分；

(d) 附件四定稿，并重新编号为附件三：删除了附件四中的已有基本范例，代之以上文所述并

在第 12 段中加以扩展的两个 API 规范范例；

(e) 删除附件五：工作队决定该附件不应成为本标准的一部分；

(f) 附件六、附件七和附件八分别被重新编号为附件四、附件五和附件六；

(g) 新增附件七，提供 API 生命周期说明，以帮助各主管局公布其生命周期管理计划；以及

(h) 在附件二中，将‘receivingOfficeCode’和‘receivingOfficeDate’的业务

词汇示例重新分类至与“所有”业务领域相关。

14. 标准委员会第七届会议之前曾讨论了拟议标准附件四中所提供范例的进展情况（见文件

CWS/7/29 第 43 至 44 段）。这些示例的规范现在均已完成。第一个例子受到 OPD API DocList 的启

发，以 YAML（Yet Another Markup Language）提供，响应格式为 XML。第二个例子以 RAML（RESTful

API Markup Language）提供，响应格式为 XML 或 JSON。所有上述示例的必要文献均可使用附件四中

所提供的链接下载。

试点实施

15. 标准委员会第六届会议后，国际局就标准草案启动了内部讨论，并计划在开发产权组织网络服

务时予以实施。部分产权组织网络 API 的开发人员已经在使用该标准草案，其中包括 WIPO Sequence

项目、知识产权门户团队以及 WIPO Case 团队。

16. 实施该拟议新标准，需要参考附件一标明的 XML 或 JSON 响应格式类型，并选择特定合规等级。

例如，如果开发人员正在制作一个提供 JSON 响应的 API，并想选择最高合规等级，即 AAJ 级，他们会

在开发过程中遵循附件一表 3 所列出的指南。

进一步的开发和推广活动

17. 随着越来越多的主管局开始采用 API 来实施业务流程并向其利益攸关方提供服务，国际局认识

到了解各知识产权局所提供的 API 的用处。国际局想要求直接对各知识产权局进行调查，以了解各知

识产权局利用 API 落实其服务的程度。为了更高效地完成这项任务，并定期更新该信息，API 工作队

提议实施统一目录，列出各局对外 API 的清单。该目录应为用户提供一个门户，帮助其确定各知识产

权局提供的可用网络服务，并在可能的情况下提供简单检索功能。这或许也有助于提升一些主管局的

https://www.wipo.int/standards/en/sequence/
https://www.wipo.int/standards/en/sequence/
https://www.wipo.int/case/en/

CWS/8/2

第 5 页

API 对用户和其他知识产权局的知名度。为实现这一目标，API 工作队建议，标准委员会要求秘书处考

虑并与 API 工作队合作开发或定制自动化工具，以收集各局提供的 API 信息，并在产权组织网站上公

布该统一目录。工作队还建议标准委员会要求在下届委员会会议上就此提供进展报告。

18. 2020 年 6 月 17 日，国际局与 API 工作队合作举办了“API 日”在线活动，吸引了约 200 名与会

者通过虚拟平台参会，包括各知识产权局、为知识产权局提供支持的感兴趣的商业知识产权数据提供

商和/或终端用户。与会者讨论了产权组织网络 API 标准草案、API 趋势、商业层面和知识产权局层面

的 API 开发策略，并在最后开展了知识产权局使用 API 标准实施 API 的案例研究。国际局有意在未来

举行此类合作论坛。

19. API 标准通过后，API 工作队将继续开会讨论其未来的改进，包括如附件二的新编者按所述，如

何采取更灵活的手段提供产权组织标准 ST.96 XML 词汇表和在日后提供同样符合产权组织标准 ST.96

的 JSON 词汇表。

20. 网络 API 的拟议新标准获得标准委员会通过后，第 56 号任务即告完成。然而，API 工作队认

为，由于 API 相关技术的发展，需要继续改进这一新产权组织标准，还需开展其他工作，包括上文第

18 段所述的工作。因此，工作队提议应将该项任务的说明修改如下：

“确保对产权组织标准 ST.90 进行必要的修订和更新；支持国际局制定各局所提供 API 的

统一目录；支持国际局推广和实施产权组织标准 ST.90”。

21. 请标准委员会：

(a) 注意本文件及其附件的内容；

(b) 审议并批准拟议标准“产权组织

标准 ST.90——关于使用网络 API（应用

程序接口）处理和交流知识产权数据的建

议”的名称；

(c) 审议并通过转录于本文件附件的

新产权组织标准 ST.90；

(d) 审议并批准上文第 20 段所述对第

56 号任务说明的修订；以及

(e) 审议并批准上文第 17 段所列由秘

书处在产权组织网站上提供统一目录并向

其下届会议报告进展情况的 API 工作队

提案。

[后接附件]

CWS/8/2

附 件

WIPO STANDARD ST.XX

RECOMMENDATION FOR PROCESSING AND COMMUNICATING INTELLECTUAL PROPERTY DATA USING WEB
APIS (APPLICATION PROGRAMMING INTERFACES)

Final Draft

Proposal presented by the API Task Force for consideration at CWS/8.

TABLE OF CONTENTS

WIPO STANDARD ST.XX ...1
INTRODUCTION ... 3
DEFINITIONS AND TERMINOLOGY .. 3
Notations ... 4

General notations ..4
Rule identif iers ...4

SCOPE .. 5
WEB API DESIGN PRINCIPLES ... 6
RESTFUL WEB API .. 7

URI Components ...7
Status Codes ...8
Pick-and-choose Principle ...8
Resource Model...8
Supporting multiple formats ...10
HTTP Methods...11
Data Query Patterns ..16
Error Handling ...21
Service Contract ..23
Time-out 24
State Management ..24
Preference Handling ..26
Translation...26
Long-Running Operations..26
Security Model ...27
API Maturity Model ..31

SOAP WEB API... 31
General Rules..32
Schemas 32
Naming and Versioning..33
Web Service Contract Design ..34
Attaching Policies to WSDL Definitions..34
SOAP – Web Service Security...34

Data Type Formats .. 34
CONFORMANCE .. 35
REFERENCES .. 36

CWS/8/2

附件第 2 页

WIPO Standards..36
Standards and Conventions...36
IP Offices’ REST APIs ...37
Industry REST APIs and Design Guidelines ..37
Others 37

ANNEX I .. 38
ANNEX II ... 60
ANNEX III .. 62

DocList Example Model ...62
Patent Legal Status Example Model ..62

ANNEX IV.. 64
ANNEX V... 66
ANNEX VI.. 69
ANNEX VII... 71

Created 71
Published 71
Deprecated ..72
Retired 72

CWS/8/2

附件第 3 页

INTRODUCTION

1 This Standard provides recommendations on Application Programming Interfaces (APIs) to facilitate the processing
and exchange of Intellectual Property (IP) data in a harmonized w ay over the Web.

2 This Standard is intended to:

− ensure consistency by establishing uniform web service design principles;
− improve data interoperability among w eb service partners;
− encourage reusability through unif ied design;
− promote data naming f lexibility across business units through a clearly defined namespace policy in associated

XML resources;
− promote secure information exchange;
− offer appropriate internal business processes as value-added services that can be used by other organizations;

and
− integrate its internal business processes and dynamically link them w ith business partners.

DEFINITIONS AND TERMINOLOGY

3 For the purpose of this Standard, the expressions:

− “Hyper Text Transfer Protocol (HTTP)” is intended to refer to the application protocol for distributed, collaborative,
and hypermedia information systems. HTTP is the foundation of data communication for the World Wide Web.
HTTP functions as a request–response protocol in the service oriented computing model.;

− “Application Programming Interfaces” (API) means software components that provide a reusable interface between
different applications that can easily interact to exchange data;

− “Representational State Transfer (REST)” describes a set of architectural principles by which data can be
transmitted over a standardized interface, i.e. HTTP. REST does not contain an additional messaging layer and
focuses on design rules for creating stateless services;

− “Simple Object Access Protocol (SOAP)” means a protocol for sending and receiving messages between
applications w ithout confronting interoperability issues. SOAP defines a standard communication protocol (set of
rules) specif ication for XML-based message exchange. SOAP uses different transport protocols, such as HTTP
and SMTP. The standard protocol HTTP makes it easier for SOAP model to tunnel across f irewalls and proxies
w ithout any modif ications to the SOAP protocol;

− “Web Service” means a method of communication betw een two applications or electronic machines over the World
Wide Web (WWW) and Web Services are of two kinds: REST and SOAP;

− “RESTful Web API” means a set of Web Services based on REST architectural paradigm and typically use JSON
or XML to transmit data;

− “SOAP Web API” means a set of SOAP Web Services based on SOAP and mandate the use of XML as the
payload format;

− “Web Services Description Language (WSDL)" means a W3C Standard that is used w ith the SOAP protocol to
provide a description of a Web Service. This includes the methods a Web Service uses, the parameters it takes
and the means of locating Web Services etc.;

− RESTful API Modelling Language (RAML) refers to a language w hich allow s developers to provide a specif ication
of their API;

− Open API Specif ication (OAS) refers to a language w hich allows developers to provide a specif ication of their API;
− “Service Contract” (or Web Service Contract) means a document that expresses how the service exposes its

capabilities as functions and resources offered as a published API by the service to other software programs; the
term “REST API documentation” is interchangeably used for the Service Contract for RESTful Web APIs;

− “Service Provider” means a Web Service software exposing a Web Service;
− “Service Consumer” means the runtime role assumed by a software program when it accesses and invokes a

service. More specif ically, when the program sends a message to a service capability expressed in the service
contract. Upon receiving the request, the service begins processing and it may or may not return a corresponding
response message to the service consumer;

− “Camelcase” is either the low erCamelCase (e.g., applicantName), or the UpperCamelCase (e.g., ApplicantName)
naming convention;

− Kebab-case is one of the naming conventions w here all are low ercase with hyphens “-“ separating words, for
example a-b-c;

− “Open Standards” means the standards that are made available to the general public and are developed (or
approved) and maintained via a collaborative and consensus driven process. “Open Standards” facilitate
interoperability and data exchange among different products of services and are intended for widespread adoption;

− Uniform Resource Identif ier (URI) identif ies a resource and Uniform Resource Locator (URL) is a subset of the
URIs that include a netw ork location;

https://en.wikipedia.org/wiki/Application_protocol
https://en.wikipedia.org/wiki/Hypermedia
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/Request%E2%80%93response

CWS/8/2

附件第 4 页

− “Entity Tag (ETag)” means an opaque identif ier assigned by a w eb server to a specif ic version of a resource found
at a URL. If the resource representation at that URL ever changes, a new and different ETag is assigned. ETags
can be compared quickly to determine w hether two representations of a resource are the same;

− “Service Registry” means a netw ork-based directory that contains available services;
− “RMM” refers to the Richardson Maturity Model a measure of REST API maturity using a scale ranging from 0-3;

and
− “Semantic Versioning” means a versioning scheme w here a version is identif ied by the version number

MAJOR.MINOR.PATCH, w here:

• MAJOR version w hen you make incompatible API changes,
• MINOR version w hen you add functionality in a backw ards-compatible manner and
• PATCH version w hen you make backw ards-compatible bug f ixes.

4 In terms of conformance in design rules the follow ing keywords should be interpreted, in the same manner as
defined in para. 8 of WIPO ST.961, that is:

− MUST: an equivalent to “REQUIRED” or “SHALL”, means that the definition is an absolute requirement of the
specif ication;

− MUST NOT: equivalent to “SHALL NOT”, means that the definition is an absolutely prohibited by the specif ication;
− SHOULD: equivalent to “RECOMMENDED”, means that there may exist valid reasons for ignoring this item, but the

implications of doing so need to be fully considered;
− SHOULD NOT: equivalent to “NOT RECOMMENDED”, means that there may exist valid reasons where this behavior

may be acceptable or even useful but the implications of doing so need to be carefully considered; and
− MAY: equivalent to “OPTIONAL”, means that this item is truly optional, and is only provided as one option selected

from many.

NOTATIONS

General notations

5 The follow ing notations are used throughout this document:

− <>: Indicates a placeholder descriptive term that, in implementation, w ill be replaced by a specif ic instance value;
− “ ”: Indicates that the text included in quotes must be used verbatim in implementation;
− { }: Indicates that the items are optional in implementation; and
− Courier font: Indicates keywords or source code.

6 The URLs provided w ithin this Standard are for example purposes only and are not live.

Rule identif iers

7 All design rules are normative. Design rules are identif ied through a prefix of [XX-nn] or [XXY-nn].

(a) The value “XX” is a prefix to categorize the type of rule as follow s:

− WS for SOAP Web API design rules;
− RS for RESTful Web API design rules; and
− CS for both SOAP and RESTful WEB API design rule.

(b) The value “Y” is used only for RESTful design rules and provides further granularity on the type of response
that the rule is related to:

− “G” indicates it is a general rule for both JSON and XML response;
− “J” indicates it is for a JSON response; and
− “X” indicates it is an XML response.

(c) The value “nn” indicates the next available number in the sequence of a specif ic rule type. The number does
not reflect the position of the rule, in particular, for a new rule. A new rule will be placed in the relevant
context. For example, the rule identif ier [WS-4] identif ies the fourth SOAP Web API design rule. The rule [WS-4]

1 Please refer the References chapter

CWS/8/2

附件第 5 页

can be placed betw een rules [WS-10] and [WS-11] instead of follow ing [WS-3] if that is the most appropriate
location for this rule.

(d) The rule identif ier of the deleted rule w ill be kept w hile the rule text w ill be replaced w ith “Deleted”.

SCOPE

8 This Standard aims to guide the Intellectual Property Offices (IPOs) and other Organizations that need to manage,
store, process, exchange and disseminate IP data using Web APIs. It is intended that by using this Standard, the
development of Web APIs can be simplif ied and accelerated in a harmonized manner and interoperability among Web APIs
can be enhanced.

9 This Standard intends to cover the communications betw een IPOs and their applicants or data users, and betw een
IPOs through connections between devices-to-devices and devices-to-software applications.

Fig. 1 Scope of the Standard

10 This Standard is to provide a set of design rules and conventions for RESTful and SOAP Web APIs; list of IP data
resources which will be exchanged or exposed; and model API documentation or service contract, which can be used for
customization, describing message format, data structure and data dictionary in JSON2 and/or XML format based on WIPO
Standard ST.96.

11 This Standard provides model Service Contracts for SOAP Web APIs using WSDL and, for RESTful Web APIs using
the REST API Modeling Language (RAML) and Open API Specif ication (OAS). A Service Contract also defines or refers to
data types for interfaces (see the Section “Data Type Convention” below). This Standard recommends three types of
interfaces: REST-XML (XSD), REST-JSON and SOAP-XML (XSD).

12 This Standard excludes the follow ing:

(a) Binding to specif ic implementation technology stacks and commercial off-the-shelf (COTS) products;
(b) Binding to specif ic architectural designs (for example, Service Oriented Architecture (SOA) or Microservice

Oriented Architecture (MOA));
(c) Binding to specif ic algorithms such as algorithms for the calculation of ETag, i.e. calculation of a unique identif ier

for a specif ic version of a resource (for example, used for caching).

2 The WIPO JSON Standard is currently under discussion but will be based on WIPO Standard ST.96

q54331

Mobile
Laptop

Desktop

Request

Response

WEB API B WEB API A

• Patents
• Trademarks
• Designs
• Geographical

Indications
• Others

Request

Response

 Filing
 Processing
 Publication
 Search
 ...

Mobile
Laptop

Desktop

q54331

• Patents
• Trademarks
• Designs
• Geographical

Indications
• Others

 Filing
 Processing
 Publication
 Search
 ...

CWS/8/2

附件第 6 页

WEB API DESIGN PRINCIPLES

13 Both RESTful Web APIs and SOAP Web APIs have proven their ability to meet the demands of big organizations as
w ell as to service the small-embedded applications in production. When choosing between RESTful and SOAP, the
follow ing aspects can be considered:

− Security, e.g., SOAP has WS-Security w hile REST does not specify any security patterns;
− ACID Transaction, e.g., SOAP has WS-AT specif ication while REST does not have a relevant specif ication;
− Architectural style, e.g., Microservices and Serverless Architecture Style use REST w hile SOA uses SOAP w eb

services;
− Flexibility;
− Bandw idth constraints; and
− Guaranteed delivery, e.g. SOAP offers WS-RM w hile REST does not have a relevant specif ication.

14 The follow ing service-oriented design principles should be respected when a Web API is designed:

(a) Standardized Service Contract: Standardizing the service contracts is the most important design principle
because the contracts allow governance and a consistent service design. A service contract should be easy to
implement and understand. A service contract consists of metadata that describes how the service provider
and consumer w ill interact. Metadata also describes the conditions under which those parties are entitled to
engage in an interaction. It is recommended that service contracts include:

− Functional requirements: w hat functionality the Service provides and what data it w ill return, or
typically a combination of the tw o;

− Non-functional requirements: information about the responsibility of the providers for providing their
functionality and/or data, as w ell as the expected responsibilities of the consumers of that
information and w hat they will need to provide in return. For example, a consumer’s availability,
security, and other quality of service considerations.

(b) Service Loose Coupling: Clients and services should evolve independently. Applying this design principle
requires:

− Service versioning – Consumers bound to a Web API version should not take the risk of unexpected
disruptions due to incompatible API changes; and

− The service contract should be independent of the technology details.

(c) Service Abstraction – The service implementation details should be hidden. The API Design should be
independent of the strategies supported by a server. For example, for the REST Web Service, the API resource
model should be decoupled from the entity model in the persistence layer;

(d) Service Statelessness – Services should be scalable;
(e) Service Reusability – A w ell-designed API should provide reusable services w ith generic contracts. In this

regard, this Standard provides a model service contract;
(f) Service Autonomy – The Service functional boundaries should be w ell def ined;
(g) Service Discoverability –Services should be effectively discovered and interpreted;
(h) Service Composability Services can be used to compose other services;
(i) Using Standards as a Foundation – The API Should follow industry standards (such as IETF, ISO, and OASIS)

w herever applicable, naturally favoring them over locally optimized solutions; and
(j) Pick-and-choose Principle – It is not required to implement all the API design rules. The design rules should be

chosen based on the implementation of each concrete case.

15 In addition, the follow ing principles should be respected especially with regard to the RESTful Web APIs:

(a) Cacheable: responses explicitly indicate their cacheability;
(b) Resource identif ication in requests: individual resources are identif ied in requests; for example using URIs in

Web-based REST systems. The resources themselves are conceptually separate from the representations that
are returned to the client;

(c) Hypermedia as the engine of application state (HATEOAS) - having accessed an initial URI for the REST
application—analogous to an individual accessing the home page of a w ebsite—a REST client should then be
able to use server-provided links dynamically to discover all the available actions and resources it needs;

(d) Resource manipulation through representations - w hen a client holds a representation of a resource, including
any metadata attached, it has enough information to modify or delete the resource;

(e) Self-descriptive messages - each message includes enough metadata to describe how to process the message
content;

(f) Web API should follow HTTP semantics such as methods, errors etc.;

CWS/8/2

附件第 7 页

(g) Available to the public - design w ith the objective that the API w ill eventually be accessible from the public
internet, even if there are no plans to do so at the moment;

(h) Common authentication - use a common authentication and authorization pattern, preferably based on existing
security components, in order to avoid creating a bespoke solution for each API;

(i) Least Privilege - access and authorization should be assigned to API consumers based on the minimal amount
of access they need to carry out the functions required;

(j) Maximize Entropy - the randomness of security credentials should be maximized by using API Keys rather than
username and passw ords for API authorization, as API Keys provide an attack surface that is more challenging
for potential attackers; and

(k) Performance versus security - balance performance with security with reference to key life times and encryption
/ decryption overheads.

RESTFUL WEB API

16 A RESTful Web API allow s requesting systems to access and manipulate textual representations of Web resources
using a uniform and predefined set of stateless operations.

URI Components

17 RESTful Web API s use URIs to address resources. According to RFC 3986, an URI syntax should be defined as
follow s:

URI = <scheme> "://" <authority> "/" <path> {"?" query}

authority = {userinfo@}host{:port}

For example, https://w ipo.int/api/v1/patents?sort=id&offset=10
 ______/______/___________/_________________/
 | | | |

 scheme authority path query parameters

18 The forward slash “/” character is used in the path of the URI to indicate a hierarchical relationship betw een
resources but the path must not end w ith a forward slash as it does not provide any semantic value and may cause
confusion.

[RSG-01] The forw ard slash character “/” MUST be used in the path of the URI to indicate a hierarchical relationship
betw een resources but the path MUST NOT end w ith a forward slash.

19 URIs are case sensitive except for the scheme and host parts. For example, although
https://wipo.int/api/my-resources/uniqueId and https://wipo.INT/api/my-resources/uniqueId
are the same, https://wipo.int/api/my-resources/uniqueid is not. For the resource names, the kebab-case
and the low erCamelCase conventions provide good readability and maps the resource names to the entities in the
programming languages w ith simple transformation. For the query parameters, the low erCamelCase should be used. For
example, https://wipo.int/api/v1/inventors?firstName=John. Resource names and query parameter are all
case sensitive. Note, that resource names and query parameter names may be abbreviated.

20 A RESTful Web API may have arguments:

− In the query parameter; for example, /inventors?id=1;
− In the URI path segment parameter, for example, /inventors/1; and
− In the request payload such as part of a JSON body.

21 Except for the aforementioned argument types, w hich are part of the URI, an argument can also be part of the
request payload.

[RSG-02] Resources name MUST be consistent in their naming pattern.

[RSG-03] Resource names in the request SHOULD use kebab-case naming conventions and they MAY be
abbreviated.

[RSG-04] Query parameters MUST be consistent in their naming pattern

https://wipo.int/api/my-resources/uniqueId
https://wipo.int/api/my-resources/uniqueid
https://wipo.int/api/v1/inventors?firstName=John

CWS/8/2

附件第 8 页

[RSG-05] Query parameters SHOULD use the low erCamelCase convention and they MAY be abbreviated.

22 A Web API endpoint must comply w ith IETF RFC 3986 and should avoid potential collisions w ith page URLs for
the w ebsite hosted on the root domain. A Web API needs to have one exact entry point to consolidate all requests. In
general, there are tw o patterns of defining endpoints:

− As the f irst path segment of the URI, for example: https://wipo.int/api/v1/; and
− As subdomain, for example: https://api.wipo.int/v1/

[RSG-06] The URL pattern for a Web API MUST contain the w ord “api” in the URI.

23 Matrix parameters are an indication that the API is complex w ith multiple levels of resources and sub-resources.
This goes against the service-oriented design principles, previously defined. Moreover, matrix parameters are not standard
as they apply to a particular path element w hile query parameters apply to the request as a w hole. An example of matrix
parameters is the follow ing: https://api.wipo.int/v1/path;param1=value1;param2=value2 .

[RSG-07] Matrix parameters MUST NOT be used.

Status Codes

24 A Web API must consistently apply HTTP status codes as described in IETF RFCs. HTTP status codes should be
used among the ones listed in the standard HTTP status codes (RFC 7807) reproduced in Annex V.

 [RSG-08] A Web API MUST consistently apply HTTP status codes as described in IETF RFCs.

 [RSG-09] The recommended codes in Annex V SHOULD be used by a Web API to classify the error.

Pick-and-choose Principle

25 A Service Contract should be tolerant to unexpected parameters (in the request, using query parameters) but raise
an error in case of malformed values on expected parameters.

[RSG-10] If the API detects invalid input values, it MUST return the HTTP status code “400 Bad Request”. The
error payload MUST indicate the erroneous value.

[RSG-11] If the API detects syntactically correct argument names (in the request or query parameters) that are not
expected, it SHOULD ignore them.

[RSG-12] If the API detects valid values that require features to not be implemented, it MUST return the HTTP
status code “501 Not Implemented”. The error payload MUST indicate the unhandled value.

Resource Model

26 An IP data model should be divided into bounded contexts following a domain-driven design approach. Each
bounded context must be mapped to a resource. According to the design principles, a Web API resource model should
be decoupled from the data model. A Web API should be modeled as a resource hierarchy to leverage the hierarchical
nature of the URI to imply structure (association or composition or aggregation), w here each node is either a simple (single)
resource or a collection of resources.

27 In this hierarchical resource model, the nodes in the root are called ‘top-level nodes’ and all of the nested resources
are called ‘sub-resources’. Sub-resources should be used only to imply compositions, i.e. resources that cannot be top-level
resources, otherwise there would be multiple w ay of retrieving the same entities. Such sub-resources, implying association,
are called sub-collections. The other hierarchical structures, i.e. association and aggregation, should be avoided to avoid
complex APIs and duplicate functionality.

28 The endpoint alw ays determines the type of the response. For example, the endpoint
https://wipo.int/api/v1/patents alw ays returns responses regarding patent resources. The endpoint
https://wipo.int/api/v1/patents/1/inventor alw ays returns responses regarding inventor resources.
How ever, the endpoint https://wipo.int/api/v1/inventors is not allow ed because the inventor resource cannot
be standalone.

https://api.wipo.int/v1/path;param1=value1;param2=value2
https://wipo.int/api/v1/patents
https://wipo.int/api/v1/patents/1/inventor
https://wipo.int/api/v1/inventors

CWS/8/2

附件第 9 页

29 Only top-level resources, i.e. with a maximum of one level should be used, otherwise these APIs w ill be very
complex to implement. For example, https://wipo.int/api/v1/patents?inventorId=12345 should be used
instead of https://wipo.int/api/v1/inventors/12345/patents .

[RSG-13] A Web API SHOULD only use top-level resources. If there are sub-resources, they should be collections
and imply an association. An entity should be accessible as either top-level resource or sub-resource but not
using both w ays.

[RSG-14] If a resource can be stand-alone it MUST be a top-level resource, or otherwise a sub-resource.

[RSG-15] Query parameters MUST be used instead of URL paths to retrieve nested resources.

30 There are types 3 of Web APIs: the CRUD (Create, Read, Update, and Delete) Web API and the Intent Web API.
CRUD Web APIs model changes to a resource, i.e., create/read/update/delete operations. Intent Web APIs by contrast
model business operations, e.g., renew/register/publish. CRUD operations should use nouns and Intent Web APIs should
use verbs for the resource names. CRUD Web APIs are the most common but both can be combined for example, the
service consumer could use an Intent Web API modeling business operation, w hich would orchestrate the execution of one
or more CRUD Web APIs service operations. Using CRUD Web API, the service caller has to orchestrate the business
logic but w ith Intent Web APIs it is the service provider who orchestrates the business logic. CRUD Web APIs are not
atomic w hen compared with Intent Web APIs 4.

− For example, a trademarks ow ner wants to renew the ones that w ill expire soon (for example, on yyyy-mm-dd).
This is a combination of the follow ing business operations:

− Retrieve marks that w ill expire on yyyy-mm-dd; and
− Renew the retrieved marks by their international registration number.

Using a CRUD Web API the previous business operations would be modeled w ith a non-atomic process, requiring
tw o actions such as:

Step 1: Get all the trademarks in XML format5 that belong to the holder w ith the name John Smith and w ill expire,
for example, on 2018-12-31:

GET /api/v1/trademarks? holderFullName=John%20Smith&expiryDate=2018-12-31. HTTP/1.1
Host: wipo.int
Accept: application/xml

The follow ing example HTTP response is returned:

HTTP/1.1 200 OK
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>
<tmk:TrademarkBag xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:com="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:tmk="http://www.wipo.int/standards/XMLSchema/ST96/Trademark"
xsi:schemaLocation="http://www.wipo.int/standards/XMLSchema/ST96/Trademark
TrademarkBag.xsd">
 <tmk:Trademark xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:com="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:tmk="http://www.wipo.int/standards/XMLSchema/ST96/Trademark"
com:operationCategory="Delete"
xsi:schemaLocation="http://www.wipo.int/standards/XMLSchema/ST96/Trademark
Trademark.xsd">

3 Alternatively we could classify APIs according to their archetype. See for instance: “REST API Design Rulebook: Designing
Consistent RESTful Web Service Interfaces”

4 An Intent API also enables the application of the Command Query Responsibility Segregation (CQRS) pattern. CQRS is a pattern,
where you can use a different model to update information than the model you use to read information. The rationale is that for
many problems, particularly in more complicated domains, having the same conceptual model for commands and queries leads to a
more complex model that is not beneficial.

5 JSON example is skipped since it does not add any value in this case.

https://wipo.int/api/v1/patents?inventorId=12345
https://wipo.int/api/v1/inventors/12345/patents

CWS/8/2

附件第 10 页

 ...
 <com:RegistrationNumber>
 <com:IPOfficeCode>IT</com:IPOfficeCode>

 <com:ST13ApplicationNumber>000000000000001</com:ST13ApplicationNumber>
 </com:RegistrationNumber>
 ...
 <com:ExpiryDate>2018-12-31</com:ExpiryDate>
 ...
 </tmk:Trademark>
 ...
</tmk:TrademarkBag>

Step 2: Submit a trademark renew al request for each trademark retrieved in the previous step (depicting here only
the f irst renewal request):

POST /api/v1/trademarks/renewalRequests HTTP/1.1
Host: wipo.int
Accept: application/xml
Content-Type: application/xml
<?xml version="1.0" encoding="UTF-8"?>
<tmk:MadridRenewal xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:com="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:tmk="http://www.wipo.int/standards/XMLSchema/ST96/Trademark"
xsi:schemaLocation="http://www.wipo.int/standards/XMLSchema/ST96/Trademark
MadridRenewal.xsd">
 ...
 <com:InternationalRegistrationNumber>000000000000001</com:InternationalRegist
rationNumber>
 ...
</tmk:MadridRenewal>

− The previous example could also be modeled w ith an atomic service call using an Intent Web API such as 6:

POST /api/v1/trademarks/findAndRenew?holderFullName=john%20smith&expiryDate=2018-
12-31
Host: wipo.int

31 The type of Web API should then place constraints on how the resources are named to provide an indication on
w hich is being used. Note, that resource names that are localized due to business requirements may be in other languages.

[RSG-16] Resource names SHOULD be nouns for CRUD Web APIs and verbs for Intent Web APIs.

[RSG-17] If resource name is a noun it SHOULD alw ays use the plural form. Irregular noun forms SHOULD NOT
be used. For example, /persons should be used instead of /people.

[RSG-18] Resource names, segment and query parameters MUST be composed of w ords in the English language,
using the primary English spellings provided in the Oxford English Dictionary. Resource names that are localized
due to business requirements MAY be in other languages.

Supporting multiple formats

32 Different service consumers may have differing requirements for the data format of the service responses. The
media type of the data should be decoupled from the data itself, allow ing the service to support a range of media types.
Therefore, a Web API must support content type negotiation using the request HTTP header Accept and the response
HTTP header Content-Type as required by IETF RFC 7231. For example, for requesting data in JSON format the header
Accept should be Accept: application/json and for data in XML format the Accept should be Accept:
application/xml. Likew ise, for the header Content-Type. Additionally, a Web API may support other w ays of
content type negotiation such as query parameter (for example ?format) or URL suff ix (for example .json).

6 The element InternationalRegistrationNumber has been removed from the payload to denote all the IRNs. The ST.96 should be
not used or relaxed since the example here extends the uses cases allowed from ST.96.

https://wipo.int/api/v1/findAndRenew?applicantFullName=john

CWS/8/2

附件第 11 页

[RSG-19] A Web API SHOULD use for content type negotiation the request HTTP header Accept and the
response HTTP header Content-Type.

33 APIs must support XML and JSON requests and responses. For XML, responses must be compliant w ith WIPO
Standard using XML such as ST.967. A consistent mapping betw een these two formats should be used.

[RSG-20] A Web API MUST support content type negotiation follow ing IETF RFC 7231.

[RSG-21] JSON format MUST be assumed w hen no specif ic content type is requested.

[RSG-22] A Web API SHOULD return the status code “406 Not Acceptable” if a requested format is not
supported.

[RSG-23] A Web API SHOULD reject requests containing unexpected or missing content type headers w ith the
HTTP status code “406 Not Acceptable” or “415 Unsupported Media Type”.

[RSX-24] The requests and responses (naming convention, message format, data structure, and data dictionary)
SHOULD refer to WIPO Standard ST.96.

[RSJ-25] JSON object property names SHOULD be provided in low erCamelCase, e.g., applicantName.

[RSX-26] XML component names SHOULD be provided in UpperCamelCase.

[RSG-27] A Web API MUST support at least XML or JSON.

HTTP Methods

34 HTTP Methods (or HTTP Verbs) are a type of function provided by a uniform contract to process resource identif iers
and data. HTTP Methods must be used as they w ere intended to according the standardized semantics as specified in IETF
RFC 7231 and 5789, namely:

− GET – retrieve data
− HEAD – like GET but w ithout a response payload
− POST – submit new data
− PUT – update
− PATCH – partial update
− DELETE – delete data
− TRACE – echo
− OPTIONS – query verbs that the server supports for a given URL

35 The uniform contract establishes a set of methods to be used by services within a given collection or inventory.
HTTP Methods tunneling may be useful w hen HTTP Headers are rejected by some firewalls.

36 HTTP Methods may follow the ‘pick-and-choose’ principle, which states that only the functionality needed by the
target usage scenario should be implemented. Some proxies support only POST and GET methods. To overcome these
limitations, a Web API may use a POST method w ith a custom HTTP header “tunneling” the real HTTP method.

[RSG-28] HTTP Methods MUST be restricted to the HTTP standard methods POST, GET, PUT, DELETE, OPTIONS,
PATCH, TRACE and HEAD, as specified in IETF RFC 7231 and 5789.

7 A JSON specification and JSON schema based on ST.96 are currently under discussion by the XML4IP TF aiming to present them
for consideration at CWS/8 in November 2020 for consideration/adoption as a new WIPO Standard. Meanwhile, this standard
recommends the BadgerFish convention due to its simplicity until the JSON schema is provided. Some IPOs, such as EPO, also
refer to it, www.epo.org/searching-for-patents/data/web-services/ops.html.

CWS/8/2

附件第 12 页

[RSG-29] HTTP Methods MAY follow the pick-and-choose principle, w hich states that only the functionality needed
by the target usage scenario should be implemented.

[RSG-30] Some proxies support only POST and GET methods. To overcome these limitations, a Web API MAY
use a POST method w ith a custom HTTP header “tunneling” the real HTTP method. The custom HTTP header X-
HTTP-Method SHOULD be used.

[RSG-31] If a HTTP Method is not supported, the HTTP status code “405 Method Not Allowed” SHOULD be
returned.

37 In some use cases, multiple operations should be supported at once.

[RSG-32] A Web API SHOULD support batching operations (aka bulk operations) in place of multiple individual
requests to achieve latency reduction. The same semantics should be used for HTTP Methods and HTTP status
codes. The response payload SHOULD contain information about all batching operations. If multiple errors occur,
the error payload SHOULD contain information about all the occurrences (in the details attribute). All bulk
operations SHOULD be executed in an atomic operation.

GET

38 According to IETF RFC 2616, the HTTP protocol does not place any prior limit on the length of a URI. On the other
hand, servers should be cautious about depending on URI lengths above 255 bytes, because some older client or proxy
implementations may not properly support these lengths. In the case w here this limit is exceeded, it is recommended that
named queries are used. Alternatively, a set of rules w hich determine how to convert between and GET and a POST must
be specif ied. According to the IETF RFC 2616, a GET request must be idempotent, in that the response w ill be the same no
matter how many times the request is run.

[RSG-33] For an end point w hich fetches a single resource, if a resource is not found, the method GET MUST
return the status code “404 Not Found”. Endpoints w hich return lists of resources will simply return an empty
list.

[RSG-34] If a resource is retrieved successfully, the GET method MUST return 200 OK.

[RSG-35] A GET request MUST be idempotent.

[RSG-36] When the URI length exceeds the 255 bytes, the POST method SHOULD be used instead of GET due to
GET limitations, or else create named queries if possible.

HEAD

39 When a client needs to learn information about an operation, they can use HEAD. HEAD gets the HTTP header you
w ould get if you made a GET request, but w ithout the body. This lets the client determine caching information, w hat content-
type w ould be returned, w hat status code would be returned. A HEAD request MUST be idempotent according to the
IETF RFC 2616.

[RSG-37] A HEAD request MUST be idempotent.

[RSG-38] Some proxies support only POST and GET methods. A Web API SHOULD support a custom HTTP
request header to override the HTTP Method in order to overcome these limitations.

POST

40 When a client needs to create a resource, they can use POST. For example, the follow ing HTTP request submits a
patent application request.

− For example, the follow ing submits a patent application request.

Example w ith XML payloads based on ST.96

The clients submits the patent application request as XML:

CWS/8/2

附件第 13 页

POST /v1/patents/applications HTTP/1.1
Host: wipo.int
Accept: application/xml
Content-Type: application/xml
<?xml version="1.0" encoding="UTF-8"?>
<pat:ApplicationBody xmlns="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:com="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:pat="http://www.wipo.int/standards/XMLSchema/ST96/Patent"
com:languageCode="pl" com:receivingOffice="ST" com:st96Version="V3_1"
xsi:schemaLocation="http://www.wipo.int/standards/XMLSchema/ST96/Patent
ApplicationBody_V3_1.xsd">
 ...
</pat:ApplicationBody>

The follow ing HTTP response is returned to denote the successful submission of the patent application:

HTTP/1.1 201 Created
Content-Type: application/xml
<?xml version="1.0" encoding="UTF-8"?>
<pat:ApplicationBody xmlns="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:com="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:pat="http://www.wipo.int/standards/XMLSchema/ST96/Patent"
com:languageCode="pl" com:receivingOffice="ST" com:st96Version="V3_1"
xsi:schemaLocation="http://www.wipo.int/standards/XMLSchema/ST96/Patent
ApplicationBody_V3_1.xsd" applicationBodyStatus=”pending”>
 ...
</pat:ApplicationBody>

Example w ith JSON payloads

The clients submits the patent application request as JSON:

POST /v1/patents/applications HTTP/1.1
Host: wipo.int
Accept: application/json
Content-Type: application/json
{
 " applicationBody ": {
 ...
 }
}

The follow ing HTTP response is returned to denote the successful submission of the patent application:

HTTP/1.1 200 OK
Content-Type: application/json
{
 " applicationBody ": {
 "applicationBodyStatus" : "pending",
 ...
 }
}

[RSG-39] A POST request MUST NOT be idempotent according to the IETF RFC 2616.

[RSG-40] If the resource creation was successful, the HTTP header Location SHOULD contain a URI (absolute
or relative) pointing to a created resource.

CWS/8/2

附件第 14 页

[RSG-41] If the resource creation was successful, the response SHOULD contain the status code “201
Created”.

[RSG-42] If the resource creation was successful, the response payload SHOULD by default contain the body of
the created resource, to allow the client to use it w ithout making an additional HTTP call.

PUT

41 When a client needs to replace an existing resource entirely, they can use PUT. Idempotent characteristics of PUT
should be taken into account. A PUT request has an update semantic (as specif ied in IETF RFC 7231), and an insert
semantic.

[RSG-43] A PUT request MUST be idempotent.

[RSG-44] If a resource is not found, PUT MUST return the status code “404 Not Found”.

[RSG-45] If a resource is updated successfully, PUT MUST return the status code “200 OK” if the updated
resource is returned or a “204 No Content” if it is not returned.

PATCH

42 When a client requires a partial update, they can use PATCH. Idempotent characteristics of PATCH should be taken
into account.

− For example, the follow ing request updates only a patent language given its number:

PATCH /api/v1/patents/publications/100000000000001 HTTP/1.1
Host: wipo.int
If-Match:456
Content-Type: application/merge-patch+json
{ "languageCode": "en" }

43 PATCH must not be idempotent according to IETF RFC 2616. In order to make it idempotent, the API may follow
the IETF RFC 5789 suggestion of using optimistic locking.

[RSG-46] A PATCH request MUST NOT be idempotent.

[RSG-47] If a Web API implements partial updates, idempotent characteristics of PATCH SHOULD be taken into
account. In order to make it idempotent the API MAY follow the IETF RFC 5789 suggestion of using optimistic
locking.

[RSG-48] If a resource is not found PATCH MUST return the status code “404 Not Found”.

[RSJ-49] If a Web API implements partial updates using PATCH, it MUST use the JSON Merge Patch format to
describe the partial change set, as described in IETF RFC 7386,by using the content type application/merge-
patch+json.

DELETE

44 When a client needs to delete a resource, they can use DELETE. A DELETE request must not be idempotent
according to the IETF RFC 2616

[RSG-50] A DELETE request MUST NOT be idempotent.

[RSG-51] If a resource is not found, DELETE MUST return the status code “404 Not Found”.

CWS/8/2

附件第 15 页

[RSG-52] If a resource is deleted successfully, DELETE MUST return the status “200 OK” if the deleted resource
is returned or “204 No Content” if it is not returned.

TRACE

45 The TRACE method does not carry API semantics and is used for testing and diagnostic information according to
IETF RFC 2616, for example for testing a chain of proxies. TRACE allow s the client to see w hat is being received at the
other end of the request chain and uses that data. A TRACE request MUST NOT be idempotent according to the IETF
RFC 2616.

[RSG-53] The f inal recipient is either the origin server or the f irst proxy or gateway to receive a Max-Forwards
value of zero in the request. A TRACE request MUST NOT include a body.

[RSG-54] A TRACE request MUST NOT be idempotent.

[RSG-55] The value of the Via HTTP header f ield MUST act to track the request chain.

[RSG-56] The Max-Forwards HTTP header f ield MUST be used to allow the client to limit the length of the
request chain.

[RSG-57] If the request is valid, the response SHOULD contain the entire request message in the response body,
w ith a Content-Type of "message/http".

[RSG-58] Responses to TRACE MUST NOT be cached.

[RSG-59] The status code “200 OK” SHOULD be returned to TRACE.

OPTIONS

46 When a client needs to learn information about a Web API, they can use OPTIONS. OPTIONS do not carry API
semantics. An OPTIONS request MUST be idempotent according to the IETF RFC 2616, Custom HTTP Headers.

[RSG-60] An OPTIONS request MUST be idempotent.

47 It is a common practice for a Web API using custom HTTP headers to provide "X-" as a common prefix, w hich RFC
6648 deprecates and discourages to use.

[RSG-61] Custom HTTP headers starting w ith the “X-” prefix SHOULD NOT be used.

[RSG-62] Custom HTTP headers SHOULD NOT be used to change the behavior of HTTP Methods unless it is to
resolve any existing technical limitations (for example, see [RSG-39]).

[RSG-63] The naming convention for custom HTTP headers is <organization>-<header name>, where
<organization> and <header> SHOULD follow the kebab-case convention.

48 According to the service-oriented design principles, clients and services should evolve independently. Service
versioning enables this. Common implementations of service versioning are: Header Versioning (by using a custom
header), Query string versioning (for example ?v=v1), Media type versioning (for example Accept:
application/vnd.v1+json) and URI versioning (for example /api/v1/inventors).

[RSG-64] A Web API SHOULD support a single method of service versioning using URI versioning, for example
/api/v1/inventors or Header versioning, for example Accept-version: v1 or Media type versioning, for
example Accept: application/vnd.v1+json. Query string versioning SHOULD NOT be used.

49 According to the service-oriented design principles, service providers and consumers should also evolve
independently. The service consumer should not be affected by minor (backward compatible) changes by the service
provider. Therefore, service versioning should use only major versions. For internal non-published APIs (for example, for
development and testing) minor versions may also be used such as Semantic Versioning.

[RSG-65] A versioning-numbering scheme SHOULD be follow ed considering only the major version number (for
example /v1).

CWS/8/2

附件第 16 页

50 Service endpoint identif iers include information that can change over time. It may not be possible to replace all
references to an out-of-date endpoint, which can lead to the service consumer being unable to further interact with the
service endpoint. Therefore, the service provider may return a redirection response. The redirection may be temporary or
permanent. The follow ing HTTP status codes are available:

 Permanent Temporary
Allow s changing the request method
from POST to GET

301 302

Doesn't allow changing the request
method from POST to GET

308 307

Since 301 and 302 are more generic they are preferred to increase f lexibility and overcome any unnecessary complexity.

[RSG-66] API service contracts MAY include endpoint redirection feature. When a service consumer attempts to
invoke a service, a redirection response may be returned to tell the service consumer to resend the request to a
new endpoint. Redirections MAY be temporary or permanent:

− Temporary redirect - using the HTTP response header Location and the HTTP status code “302
Found” according to IETF RFC 7231; or

− Permanent redirect - using the HTTP response header Location and the HTTP status code “301 Moved
Permanently” according to IETF RFC 7238.

51 As an API is evolving, it w ill pass through a series of major phases: planning and designing, developing, testing,
deploying and retiring. Rather than providing recommendations for the time periods that an API should preferably remain in
a particular phase, it is preferable that the Organization or Service providers instead publish their API lifecycle strategy. A
template w hich provides the basic components which define a life cycle strategy in provided in Annex VII.

[RSG-67] API lifecycle strategies SHOULD be published by the developers to assist users in understanding how
long a version w ill be maintained.

Data Query Patterns

Pagination Options

52 Pagination is a mechanism for a client to retrieve data in pages. Using pagination, w e prevent overwhelming the
service provider with resource demanding requests according to the design principles. The server should enforce a default
page size in case the service consumer has not specif ied one. Paginated requests may not be idempotent, i.e. a paginated
request does not create a snapshot of the data.

[RSG-68] A Web API SHOULD support pagination.

[RSG-69] Paginated requests MAY NOT be idempotent.

[RSG-70] A Web API MUST use query parameters to implement pagination.

[RSG-71] A Web API MUST NOT use HTTP headers to implement pagination.

[RSG-72] Query parameters limit=<number of items to deliver> and offset=<number of items
to skip> SHOULD be used, w here limit is the number of items to be returned (page size), and skip the
number of items to be skipped (offset). If no page size limit is specif ied, a default SHOULD be defined - global or
per collection; the default offset MUST be zero “0”:

− For example, the follow ing is a valid URL:

https://wipo.int/api/v1/patents?limit=10&offset=20

[RSG-73] The limit and the offset parameter values SHOULD be included in the response.

CWS/8/2

附件第 17 页

Sorting

53 Retrieving data may require the data to be sorted by ascending or descending order. A multi-key sorting criterion
may also be used. Sorting is determined through the use of the sort query string parameter. The value of this parameter
is a comma-separated list of sort keys and sort directions that can optionally be appended to each sort key, separated by the
colon ‘:’ character. The supported sort directions are either ‘asc’ for ascending or ‘desc’ for descending. The client may
specify a sort direction for each key. If a sort direction is not specif ied for a key, then a default direction is set by the server.

For example:

(a) Only sort keys specif ied:

 sort=key1,key2

 ‘key1’ is the f irst key and ‘key2’ is the second key and sort directions are defaulted by the server.

(b) Some sort directions specif ied:

 sort=key1:asc,key2

w here ‘key1’ is the f irst key (ascending order) and ‘key2’ is the second key (direction defaulted by the server,
i.e. any sort key w ithout a corresponding direction is defaulted).

(c) each keys w ith specified directions:

 sort=key1:asc,key2:desc

w here ‘key1’ is the f irst key (ascending order) and ‘key2’ is the second key (descending order).

54 In order to specify multi-attribute criteria sorting, the value of a query parameter may be a comma-separated list of
sort keys and sort directions, w ith either ‘asc’ for ascending or ‘desc’ for descending which may be appended to each sort
key, separated by the colon ‘:’ character.

[RSG-74] A Web API SHOULD support sorting.

[RSG-75] In order to specify a multi-attribute sorting criterion, a query parameter MUST be used. The value of this
parameter is a comma-separated list of sort keys and sort directions either ‘asc’ for ascending or ‘desc’ for
descending MAY be appended to each sort key, separated by the colon ‘:’ character. The default direction MUST
be specif ied by the server in case that a sort direction is not specif ied for a key.

[RSG-76] A Web API SHOULD return the sorting criteria in the response.

Expansion

55 A service consumer may control the amount of data it receives by expanding a single f ield into larger objects. This is
usually combined w ith Hypermedia support. Rather than simply asking for a linked entity ID to be included, a service caller
can request the full representation of the entity be expanded w ithin the results. Service calls may use expansions to get all
the data they need in a single API request:

− For example, if Hypermedia is supported, then the follow ing HTTP request retrieves a patent and expands its
applicant.

Retrieve a patent based on its number 8:

GET /api/v1/patents/publications/100000000000001 HTTP/1.1
Host: wipo.int
Accept: application/json

8 Patent/PatentNumber.xsd

CWS/8/2

附件第 18 页

The HTTP response is the follow ing:

HTTP/1.1 200 OK
Content-Type: application/json
200 OK
{
 "patentPublication":{
 "bibliographicData": {
 "patentGrantIdentification": {
 "patentNumber": "100000000000001"
 }
 },
 "partyBag": {
 "applicantBag": {
 "applicant": {
 "href": "https://wipo.int/api/v1/link/to/applicants"
 },
 ...
 }
 },
 ...
 }
}

Instead of the previous request, using the follow ing HTTP request retrieves the full applicant information of the
patent w ith number 100000000000001:

GET /api/v1/patents/publications?id=100000000000001&expand=applicant HTTP/1.1
Host: wipo.int
Accept: application/json

The HTTP response is the follow ing:

HTTP/1.1 200 OK
Content-Type: application/json
200 OK
{
 "patentPublication":{
 "bibliographicData": {
 "patentGrantIdentification": {
 "patentNumber": "100000000000001"
 }
 },
 "partyBag": {
 "applicantBag": {
 "applicant": {
 "partyIdentifier": ...,
 "applicantCategory": ...,
 ...
 },
 ...
 }
 },
 ...
 }
}

56 A Web API may support expanding the body of returned content.

CWS/8/2

附件第 19 页

[RSG-77] A Web API MAY support expanding the body of returned content. The query parameter
expand=<comma-separated list of attributes names> SHOULD be used.

Projection

57 A Web API should support f ield projection, w hich controls how much of an entity’s data is returned in response to an
API request. The f ield projection can decrease response time and payload size. If only specif ic attributes from the retrieved
data are required, a projection query parameter must be used instead of URL paths. The query parameter should be formed
as follow s: “fields=”<comma-separated list of attribute names>. A projection query parameter is easier to
implement and can retrieve multiple attributes. If a projection is supported, the XSD/JSON Schema should not apply in the
response since the response will not be valid against the original XSD/JSON Schema.

− For example, the follow ing request message returns only the full name of the requested patent inventor:

In case of XML payloads

Get the patent inventor full name w ith the id equal to id12345:

GET /api/v1/patents/inventors/id12345?fields=fullName
Host: wipo.int
Accept: application/xml

An example for the HTTP response message is shown:

HTTP/1.1 200 OK
Content-Type: application/xml
<?xml version="1.0" encoding="UTF-8"?>
<pat:Inventor xmlns="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:com="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:pat="http://www.wipo.int/standards/XMLSchema/ST96/Patent"
com:sequenceNumber="String" com:id="ID1"
xsi:schemaLocation="http://www.wipo.int/standards/XMLSchema/ST96/Patent
PatentPublication_V3_1.xsd">
 <Contact>
 <Name>
 <PersonName>
 <PersonFullName>John Smith</PersonFullName>
 </PersonName>
 </Name>
 </Contact>
</pat:Inventor>

In case of JSON payloads

Get the patent inventor full name w ith the id9 equal to id12345:

GET /api/v1/patents/inventors/id12345?fields=fullName
Host: wipo.int
Accept: application/json

An example for the HTTP response message is shown:

HTTP/1.1 200 OK
Content-Type: application/json
{

9 Common/id.xsd

https://wipo.int/api/v1/inventors/id12345?fields=firstName,lastName
https://wipo.int/api/v1/inventors/id12345?fields=firstName,lastName

CWS/8/2

附件第 20 页

 "inventor": {
 "personFullName": "John Smith"
 }
}

[RSG-78] A query parameter SHOULD be used instead of URL paths in case that a Web API supports projection
follow ing the format: “fields=”<comma-separated list of attribute names>.

Number of Items

58 In some use cases, the consumer of the API may be interested in the number of items in a collection. This is very
common w hen combined w ith pagination in order to know the total number of items in the collection.

− For example, the follow ing HTTP request retrieves maximum 3 patent publications, skipping the f irst 4 results and
should also contain in the response the total number of the available results:

Example w ith XML payloads based on ST.96

GET /api/v1/patents/publications?count=true&limit=3&offset=4 HTTP/1.1
Host: wipo.int
Accept: application/xml

The follow ing example HTTP response is returned:

HTTP/1.1 200 OK
Content-Type: application/xml
<?xml version="1.0" encoding="UTF-8"?>
<pat:PatentPublication xmlns="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:com="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:pat="http://www.wipo.int/standards/XMLSchema/ST96/Patent"
com:languageCode="de" com:st96Version="V3_1"
xsi:schemaLocation="http://www.wipo.int/standards/XMLSchema/ST96/Patent
PatentPublication_V3_1.xsd">
 ...
</pat:PatentPublication>
<pat:PatentPublication>
 ...
</pat:PatentPublication>
 ...
<pat:PatentPublication>
 ...
</pat:PatentPublication>
<count>100</count>

Example w ith JSON payloads

GET /api/v1/patents/publications?count=true&limit=3&offset=4 HTTP/1.1
Host: wipo.int
Accept: application/json

The follow ing example HTTP response is returned:

HTTP/1.1 200 OK
Content-Type: application/json

https://wipo.int/api/v1/patents?count=true&limit=3&offset=4
https://wipo.int/api/v1/patents?count=true&limit=3&offset=4

CWS/8/2

附件第 21 页

{
 "patentPublication": [
 {
 ...
 },
 {
 ...
 },
 {
 ...
 }
],
 "count": 3
}

59 As one alternative, a Web API may support returning the number of items in a collection inline, i.e. as the part of the
response that contains the collection itself. Alternatively, it may form part of a metadata envelope, outside the main body of
the response.

[RSG-79] A Web API MUST support returning the number of items in a collection.

[RSG-80] A query parameter MUST be used to support returning the number of items in a collection.

[RSG-81] The query parameter count SHOULD be used to return the number of items in a collection.

[RSG-82] A Web API MAY support returning the number of items in a collection inline, i.e. as the part of the
response that contains the collection itself. A query parameter MUST be used.

[RSG-83] The query parameter count=true SHOULD be used. If not specif ied, count should be set by default
to false.

[RSG-84] If a Web API supports pagination, it SHOULD support returning inline in the response the number of the
collection (i.e. the total number of items of the collection).

Complex Search Expressions

60 For retrieving data w ith only a few search criteria, the query parameters are adequate. If there is a use case w here
w e should search for data using complex search expressions (with multiple criteria, Boolean expressions and search
operators) then the API has to be designed using a more complex query language. A query language has to be supported
by a search grammar.

61 The Contextual Query Language (CQL) is a formal language for representing queries to information retrieval
systems such as search engines, bibliographic catalogs and museum collection information. Based on the semantics of
Z39.5010, its design objective is that queries must be readable and w ritable and that the language is intuitive and maintains
the expression of more complex query languages. This is just one option recommended for use, as it is used broadly by
industry.

[RSG-85] When a Web API supports complex search expressions, a query language SHOULD be specif ied, such
as CQL.

[RSG-86] A Service Contract MUST specify the grammar supported (such as f ields, functions, keywords, and
operators).

[RSG-87] The query parameter “q” MUST be used.

Error Handling

62 Error responses should always use the appropriate HTTP status code selected from the standard list of HTTP status
codes (RFC 7807), reproduced in Annex V. When the requestor is expecting JSON, return error details in a common data

10 Please refer the References chapter

https://tools.ietf.org/html/rfc7807

CWS/8/2

附件第 22 页

structure. Unless the project requires otherwise, there is no need to define application-specif ic error codes. Stack trace and
other debugging-related information should not be present in the error response body in production environments.

Error Payload

63 Error handling is carried out on tw o levels: on the protocol level (HTTP) and on the application level (payload
returned). On the protocol level, a Web API returns an appropriate HTTP status code and on the application level, a Web
API returns a payload reporting the error in adequate granularity (mandatory and optional attributes).

64 With regard to the mandatory and optional attributes for the application level error handling,

(a) the follow ing code and message attributes are mandatory and w hile the message may change in the future, the
code will not change; it is f ixed and w ill alw ays refer to this particular problem:

− code (integer) - Technical code of the error situation to be used for support purposes; and
− message (string) - User-facing (localizable) message describing the error request as requested by the HTTP

header Accept-Language(see RSG-114).

(b) The follow ing attributes are conditionally mandatory:

− details - If error processing requires nesting of error responses, it must use the details f ield for this purpose. The
details f ield must contain an array of JSON objects that shows code and message properties with the same
semantics as described above.

(c) The follow ing attributes are optional:

− target - The error structure may contain a target attribute that describes a data element (for example, a resource
path);

− status - Duplicate of the HTTP status code to propagate it along the call chain or to w rite it in the support log
w ithout the need to explicitly add the HTTP status code every time;

− moreInfo - Array of links containing more information about the error situation, for example, giving hints to the
end user; and

− internalMessage – A technical message, for example, for logging purposes.

65 Error handling should follow HTTP standards (RFC 2616). A minimum error payload is recommended:

− For example, the follow ing HTTP responses is returned when trademark w as not found for the provided
international registration number:

Example w ith XML payload based on ST.96

GET /api/v1/trademarks?irn=000000000000001John%20Smith&expiryDate=2018-12-31.
HTTP/1.1
Host: wipo.int
Accept: application/xml

The follow ing example HTTP response is returned:

HTTP/1.1 404
Content-Type: application/xml
 <?xml version="1.0" encoding="UTF-8"?>
<com:TransactionError xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:com="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xsi:schemaLocation="http://www.wipo.int/standards/XMLSchema/ST96/Common
TransactionError.xsd">
 <com:TransactionErrorCode>TRADEMARK_NOT_FOUND</com:TransactionErrorCode>
 <com:TransactionErrorText>The trademark with the provided International
Registration Number was not found</com:TransactionErrorCode>

CWS/8/2

附件第 23 页

</com:TransactionError>

Example w ith JSON Payload

HTTP/1.1 404
Content-Type: application/json
{
 "error": {
 "code": " TRADEMARK_NOT_FOUND ",
 "message": " The trademark with the provided search criteria was not found",
 "target": "/api/v1/trademarks?irn=000000000000001",
 "details": [{
 "code": "000000000000001",
 "message": "The provided international registration number does
not relate to any trademark"
 }]
 }

[RSG-88] On the protocol level, a Web API MUST return an appropriate HTTP status code selected from the list of
standard HTTP Status Codes.

[RSJ-89] On the application level, a Web API MUST return a payload reporting the error in adequate granularity.
The code and message attributes are mandatory, the details attribute is conditionally mandatory and target,
status, moreInfo, and internalMessage attributes are optional.

[RSG-90] Errors MUST NOT expose security-critical data or internal technical details, such as call stacks in the
error messages.

[RSG-91] The HTTP Header: Reason-Phrase (described in RFC 2616) MUST NOT be used to carry error
messages.

Correlation ID

66 Typically consuming a service cascades to triggering multiple other services. There should be a mechanism to
correlate all the service activations in the same execution context. For example, including the correlation ID in the log
messages, as this uniquely identif ies the logged error. A header name should be used. e.g., Request-ID or Correlation-ID
are commonly used, as taking this into account in design phase of an API, w ill foster forward compatibility betw een different
APIs and new er implementations.

[RSG-92] Every logged error SHOULD have a unique Correlation ID. A custom HTTP header SHOULD be used
and SHOULD be named Correlation-ID.

Service Contract

67 REST is not a protocol or an architecture, but an architectural style w ith architectural properties and architectural
constraints. There are no off icial standards for REST API contracts. This Standard refers to API documentation as a REST
Service Contract. The Service Contract is based on the follow ing three fundamental elements:

(a) Resource identif ier syntax – how can we express where the data is being transferred to or from?
(b) Methods – w hat are the protocol mechanisms used to transfer the data?
(c) Media types – w hat type of data is being transferred? Individual REST services use these elements in different

combinations to expose their capabilities. Defining a master set of these elements for use by a collection (or
inventory) of services makes this type of service contract "uniform".

[RSG-93] A Service Contract format MUST include the follow ing:

− API version;

CWS/8/2

附件第 24 页

− Information about the semantics of API elements;
− Resources;
− Resource attributes;
− Query Parameters;
− Methods;
− Media types;
− Search grammar (if one is supported);
− HTTP Status Codes;
− HTTP Methods;
− Restrictions and distinctive features; and
− Security (e.g. private schemas).

[RSG-94] A Service Contract format SHOULD include requests and responses in XML schema or JSON Schema
and examples of the API usage in the supported formats, i.e., XML or JSON.

[RSG-95] A REST API MUST provide API documentation as a Service Contract.

[RSG-96] A Web API implementation deviating from this Standard MUST be explicitly documented in the Service
Contract. If a deviating rule is not specif ied in the Service Contract, it MUST be assumed that this Standard is
follow ed.

[RSG-97] A Service Contract MUST allow API client skeleton code generation.

[RSG-98] A Service Contract SHOULD allow server skeleton code generation.

68 Web API documentation can be w ritten for example in RESTful API Modeling Language (RAML), Open API
Specif ication (OAS) and WSDL. As only RAML fully supports both XML and JSON request/response validation (by using
XSD schemas and JSON schemas), this Standard recommends RAML11.

[RSG-99] A Web API documentation SHOULD be w ritten in RAML or OAS. Custom documentation formats
SHOULD NOT be used.

Time-out

69 According to the service-oriented design principles, the server usage should be limited.

[RSG-100] A Web API consumer SHOULD be able to specify a server timeout for each request; a custom HTTP
header SHOULD be used. A maximum server timeout SHOULD be also used to protect server resources from over-
use.

State Management

70 If development proceeds following the REST principles, state management must be dealt w ith on the client side,
rather than on the server, since REST APIs are stateless. For example, if multiple servers implement a session, replication
should be discouraged.

Response Versioning

71 Retrieving multiple times the same data set may result in bandw idth consumption if the data set has not been
modif ied betw een the requests. Data should be conditionally retrieved only if it has not been modif ied. This can be done
w ith Content-based Resource Validation or Time-based Resource Validation. If using response versioning, a service
consumer may implement optimistic locking.

[RSG-101] A Web API SHOULD support conditionally retrieving data, to ensure only data w hich is modif ied w ill be
retrieved. Content-based Resource Validation SHOULD be used because it is more accurate.

[RSG-102] In order to implement Content-based Resource Validation the ETag HTTP header SHOULD be used in
the response to encode the data state. Afterward, this value SHOULD be used in subsequent requests in the

11 OAS is a specification. It also supports Markdown but RAML does not. On the other hand, although both OAS and RAML support
JSON Schema validation for the requests and responses, OAS does not support XSDs. Therefore, in the future, when OAS is
feature-complete it may be recommended.

CWS/8/2

附件第 25 页

conditional HTTP headers (such as If-Match or If-None-Match). If the data has not been modif ied since the request
returned the ETag, the server SHOULD return the status code “304 Not Modified” (if not modif ied). This
mechanism is specif ied in IETF RFC 7231 and 7232.

[RSG-103] In order to implement Time-based Resource Validation the Last-Modified HTTP header SHOULD be
used. This mechanism is specif ied in IETF RFC 7231 and 7232.

[RSG-104] Using response versioning, a service consumer MAY implement Optimistic Locking.

Caching

72 A Web API implementation should support cache handling in order to save bandwidth, in compliance w ith the IETF
RFC 7234.

[RSG-105] A Web API MUST support caching of GET results; a Web API MAY support caching of results from other
HTTP Methods.

[RSG-106] The HTTP response headers Cache-Control and Expires SHOULD be used. The latter MAY be
used to support legacy clients.

Managed File Transfer

73 Transferring (i.e. downloading or uploading) large f iles has a high probability of causing a netw ork interruption or
some other transmission failure. It also consumes a large amount of memory for both the service provider and service
consumer. Therefore, it is recommended to transfer large f iles in multiple chunks w ith multiple requests. This option also
provides an indication of the total dow nload or upload progress. The partial transfer of large f iles should resume support.
The service provider should advertise if it supports the partial transfer of large f iles.12

74 There are tw o approaches for implementing this type of transfer: the f irst is to use a Transfer-Encoding:
chunked header and the second using the Content-Length header. These headers should not be used together.
Content-Length indicates the full size of the f ile transferred, and therefore the receiver will know the length of the body
and w ill be able to estimate the dow nload completion time. The Transfer-Encoding: chunked header is useful for
streaming infinitely bounded data, such as audio or video, but not f iles. It is recommended to use the Content-Length
header for dow nloading as the server utilization is low in comparison to Transfer-Encoding: chunked. For
uploading, the Transfer-Encoding: chunked header is recommended.

A Web API should advertise if it supports partial f ile dow nloads by responding to HEAD requests and replying w ith the HTTP
response headers: Accept-Ranges and Content-Length. The former should indicate the unit that can be used to define
a range and should never be defined as’ none’. The latter indicates the full size of the f ile to dow nload.

[RSG-107] A Web API SHOULD advertise if it supports partial f ile dow nloads by responding to HEAD requests and
replying w ith the HTTP response headers Accept-Ranges and Content-Length.

75 A Web API that supports downloading large f iles should support partial requests according to IETF RFC 7232, i.e.:

− The service consumer asking for a range should use the HTTP header Range;
− The service provider response should contain the HTTP headers Content-Range and Content-Length; and
− The service provider response should have the HTTP status 206 Partial Content in case of a successful

range request. In case of a range request that is out of bounds (range values overlap the extent of the resource),
the server responds with a “416 Requested Range Not Satisfiable” status. In case the range requested
is not supported, the “200 OK” status is sent back from a server.

[RSG-108] A Web API SHOULD support partial f ile dow nloads. Multi-part ranges SHOULD be supported.

76 Multipart ranges may also be requested if the HTTP header Content-Type: multipart/byteranges;
boundary=XXXXX is used. A range request may be conditional if it is combined w ith ETag or If-Range HTTP Headers.

12 The service provider may return the location of the file and then the service consumer can call a directory service to download the
fi le. At the end, a partial fi le download is required. This paragraph does not take into account non-REST protocols such as FTP or
sFTP or rsync.

CWS/8/2

附件第 26 页

77 There is not any IETF RFC for large f iles upload. Therefore, in this Standard w e do not provide any implementation
recommendation for large f ile uploads.

[RSG-109] A Web API SHOULD advertise if it supports partial f ile uploads.

[RSG-110] A Web API SHOULD support partial f ile uploaded. Multi-part ranges SHOULD be supported.

78 The IETF RFC 2616 does not impose any specif ic size limit for requests. The API Service Contract should specify
the maximum limit for the requests. Moreover, on runtime the service provider should indicate to the service consumer if the
allow ed maximum limit has been exceeded.

[RSG-111] The service provider SHOULD return w ith HTTP response headers the HTTP header “413 Request
Entity Too Large” in case the request has exceeded the maximum allow ed limit. A custom HTTP header MAY
be used to indicate the maximum size of the request.

Preference Handling

79 A service provider may allow a service consumer to configure values and influence how the former processes the
requests of the latter. A standard means for implementing preference handling is outlined in IETF RFC 7240.

[RSG-112] If a Web API supports preference handling, it SHOULD be implemented according to IETF RFC 7240, i.e.
the request HTTP header Prefer SHOULD be used and the response HTTP header Preference-Applied
SHOULD be returned (echoing the original request).

[RSG-113] If a Web API supports preference handling, the nomenclature of preferences that MAY be set by using
the Prefer header MUST be recorded in the Service Contract.

Translation

80 A service consumer may request responses in a specif ic language if the service provider supports it. A standard
specif ication for handling of a set of natural languages is outlined in IETF TFC 7231.

[RSG-114] If a Web API supports localized data, the request HTTP header Accept-Language MUST be supported
to indicate the set of natural languages that are preferred in the response as specif ied in IETF RFC 7231.

Long-Running Operations

81 There are cases, where a Web API may involve long running operations. For instance, the generation of a PDF by
the service provider may take some minutes. This paragraph recommends a typical message exchange pattern to
implement such cases, for example:

// (a)
GET https://wipo.int/api/v1/patents
Accept: application/pdf
…
// (b)
HTTP/1.1 202 Accepted
Location: https://wipo.int/api/v1/queues/12345
…
// (c1)
GET https://wipo.int/api/v1/queues/12345
…
HTTP/1.1 200 OK
…
// (c2)
GET https://wipo.int/api/v1/queues/12345
HTTP/1.1 303 See Other
Location: https://wipo.int/api/v1/path/to/pdf
…
// (c3)
GET https://wipo.int/api/v1/path/to/pdf
…

CWS/8/2

附件第 27 页

82 If an API supports long-running operations, then they should be performed asynchronously to ensure the user is not
made to w ait for a response. The rule below sets out a recommended approach for implementation.

[RSG-115] If the API supports long-running operations, they SHOULD be asynchronous. The follow ing approach
SHOULD be follow ed:

(a) The service consumer activates the service operation;
(b) The service operation returns the status code “202 Accepted” according to IETF RFC 7231 (section 6.3.3),

i.e. the request has been accepted for processing but the processing has not been completed. The location of
the queued task that w as created is also returned with the HTTP header Location; and

(c) The service consumer calls the returned Location to learn if the resource is available. If the resource is not
available, the response SHOULD have the status code “200 OK”, contain the task status (for example pending)
and MAY contain other information (for example, a progress indicator, and/or a link to cancel or delete the task
using the DELETE HTTP method). If the resource is available, the response SHOULD have the status code
“303 See Other” and the HTTP header Location SHOULD contain the URL to retrieve the task results.

Security Model

General Rules

83 Within the scope of this standard, API security is concerned with pivotal security attributes that will ensure that
information accessible by an API and APIs themselves are secure throughout their lifecycle. These attributes are
confidentiality, integrity, availability, trust, non-repudiation, compartmentalization, authentication, authorization and auditing.

[RSG-116] Confidentiality: APIs and API Information MUST be identif ied, classif ied, and protected against
unauthorized access, disclosure and eavesdropping at all times. The least privilege, zero trust, need to know and
need to share13 principles MUST be follow ed.

[RSG-117] Integrity-Assurance: APIs and API Information MUST be protected against unauthorized modif ication,
duplication, corruption and destruction. Information MUST be modif ied through approved transactions and
interfaces. Systems MUST be updated using approved configuration management, change management and
patch management processes.

[RSG-118] Availability: APIs and API Information MUST be available to authorized users at the right time as
defined in the Service Level Agreements (SLAs), access-control policies and defined business processes.

[RSG-119] Non-repudiation: Every transaction processed or action performed by APIs MUST enforce non-
repudiation through the implementation of proper auditing, authorization, authentication, and the implementation of
secure paths and non-repudiation services and mechanisms.

[RSG-120] Authentication, Authorization, Auditing: Users, systems, APIs or devices involved in critical transactions
or actions MUST be authenticated, authorized using role-based or attribute based access-control services and
maintain segregation of duty. In addition, all actions MUST be logged and the authentication’s strength must
increase w ith the associated information risk.

Guidelines for secure and threat-resistant API management

84 APIs should be designed, built, tested, and implemented w ith security requirements and risks in mind. The
appropriate countermeasures and controls should be built directly into the design and not as an after-thought. It is
recommended to use best practices and standards, such as OWASP.

[RSG-121] While developing APIs, threats, malicious use cases, secure coding techniques, transport layer security
and security testing MUST be carefully considered, especially:

− PUTs and POSTs – i.e.: w hich change to internal data could potentially be used to attack or misinform;
− DELETES – i.e.: could be used to remove the contents of an internal resource repository;
− Whitelist allow able methods- to ensure that allow able HTTP Methods are properly restricted while others

w ould return a proper response code; and

13 https://www.owasp.org/index.php/Security_by_Design_Principles

https://www.owasp.org/index.php/Security_by_Design_Principles

CWS/8/2

附件第 28 页

− Well know n attacks should be considered during the threat-modeling phase of the design process to ensure
that the threat risk does not increase. The threats and mitigation defined w ithin OWASP Top Ten Cheat
Sheet14 MUST be taken into consideration.

[RSG-122] While developing APIs, the standards and best practices listed below SHOULD be follow ed:

− Secure coding best practices: OWASP Secure Coding Principles;
− Rest API security: REST Security Cheat Sheet;
− Escape inputs and cross site scripting protection: OWASP XSS Cheat Sheet;
− SQL Injection prevention: OWASP SQL Injection Cheat Sheet, OWASP Parameterization

Cheat Sheet; and
− Transport layer security: OWASP Transport Layer Protection Cheat Sheet.

[RSG-123] Security testing and vulnerability assessment MUST be carried out to ensure that APIs are secure and
threat-resistant. This requirement MAY be achieved by leveraging Static and Dynamic Application Security Testing
(SAST/DAST), automated vulnerability management tools and penetration testing.

Encryption, Integrity and non-repudiation

85 Protected services must be secured to protect authentication credentials in transit: for example, passwords, API keys or

JSON Web Tokens. Integrity of the transmitted data and non-repudiation of action taken should also be guaranteed.
Secure cryptographic mechanisms can ensure confidentiality, encryption, integrity assurance and non-repudiation.
Perfect forward secrecy is one means of ensuring that session keys cannot be compromised.

[RSG-124] Protected services MUST only provide HTTPS endpoints using TLS 1.2, or higher, w ith a cipher suite
that includes ECDHE for key exchange.

[RSG-125] When considering authentication protocols, perfect forward secrecy SHOULD be used to provide
transport security. The use of insecure cryptographic algorithms and backw ards compatibility to SSL 3 and TLS
1.0/1.1 SHOULD NOT be allow ed.

[RSG-126] For maximum security and trust, a site-to-site IPSEC VPN SHOULD be established to further protect
the information transmitted over insecure networks.

[RSG-127] The consuming application SHOULD validate the TLS certif icate chain w hen making requests to
protected resources, including checking the certif icate revocation list.

[RSG-128] Protected services SHOULD only use valid certif icates issued by a trusted certificate authority (CA).

[RSG-129] Tokens SHOULD be signed using secure signing algorithms that are compliant w ith the digital
signature standard (DSS) FIPS –186-4. The RSA digital signature algorithm or the ECDSA algorithm SHOULD be
considered.

Authentication and Authorization

86 Authorization is the act of performing access control on a resource. Authorization does not just cover the
enforcement of access controls, but also the definition of those controls. This includes the access rules and policies, w hich
should define the required level of access agreeable to both provider and consuming application. The foundation of access
control is a provider granting or denying a consuming application and/or consumer access to a resource to a certain level of
granularity. Coarse-grained access should be considered at the API or the API gatew ay request point w hile f ine-grained
control should be considered at the backend service, if possible. Role Based Access Control (RBAC) or the Attribute Based
Access Control (ABAC) model can be considered.

87 If a service is protected, then Open ID Connect should be favored over OAuth 2.0 because it f ills many of the gaps of
the latter and provides a standardized way to gain a resource owner's profile data, JSON Web Token (JWT) standardized
token format and cryptography. Other security schemes should not be used such as HTTP Basic Authorization which
requires that the client must keep a password somewhere in clear text to send along w ith each request. Also the verif ication
of this password would be slower because it w ill have to access the credential store. OAuth 2.0 does not specify the
security token. Therefore, the JWT token should be used in comparison for example to SAML 2.0, w hich is more verbose.

14 https://www.owasp.org/index.php/Top_10-2017_Top_10

https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/Secure_Coding_Principles
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Top_10-2017_Top_10

CWS/8/2

附件第 29 页

[RSG-130] Anonymous authentication MUST only be used w hen the customers and the application they are using
accesses information or feature with a low sensitivity level which should not require authentication, such as, public
information.

[RSG-131] Username and password or password hash authentication MUST NOT be allow ed.

 [RSG-132] If a service is protected, Open ID Connect SHOULD be used.

 [RSG-133] Where a JSON Web Token (JWT) is used, a JWT secret SHOULD possess high entropy to increase the
w ork factor of a brute force attack; token TTL and RTTL SHOULD be as short as possible; and sensitive information
SHOULD NOT be stored in the JWT payload.

88 A common security design choice is to centralize user authentication. It should be stored in an Identity Provider (IdP)
or locally at REST endpoints.

89 Services should be careful to prevent leaking of credentials. Passw ords, security tokens, and API keys should not
appear in the URL, as this can be captured in w eb server logs, which makes them intrinsically valuable. For example, the
follow ing is incorrect (API Key in URL): https://wipo.int/api/patents?apiKey=a53f435643de32.

[RSG-134] In POST/PUT requests, sensitive data SHOULD be transferred in the request body or by request
headers.

[RSG-135] In GET requests, sensitive data SHOULD be transferred in an HTTP Header.

[RSG-136] In order to minimize latency and reduce coupling betw een protected services, the access control
decision SHOULD be taken locally by REST endpoints.

90 API Keys Authentication: API keys should be used w herever system-to-system authentication is required and they
should be automatically and randomly generated. The inherent risk of this authentication mode is that anyone w ith a copy of
the API key can use it as though they w ere the legitimate consuming application. Hence, all communications should comply
w ith RSG-124, to protect the key in transit. The onus is on the application developer to properly protect their copy of the API
key. If the API key is embedded into the consuming application, it can be decompiled and extracted. If stored in plain text
f iles, they can be stolen and re-used for malicious purposes. An API Key must therefore be protected by a credential store
or a secret management mechanism. API Keys may be used to control services usage even for public services.

[RSG-137] API Keys SHOULD be used for protected and public services to prevent overwhelming their service
provider w ith multiple requests (denial-of-service attacks). For protected services API Keys MAY be used for
monetization (purchased plans), usage policy enforcement (QoS) and monitoring.

[RSG-138] API Keys MAY be combined w ith the HTTP request header user-agent to discern between a human user
and a software agent as specified in IETF RFC 7231.

[RSG-139] The service provider SHOULD return along w ith HTTP response headers the current usage status. The
follow ing response data MAY be returned:

− rate limit - rate limit (per minute) as set in the system;
− rate limit remaining - remaining amount of requests allow ed during the current time slot (-1 indicates that the

limit has been exceeded); and
− rate limit reset - time (in seconds) remaining until the request counter will be reset.

[RSG-140] The service provider SHOULD return the status code “429 Too Many Requests” if requests are
coming in too quickly.

[RSG-141] API Keys MUST be revoked if the client violates the usage agreement, as specif ied by the IPO.

[RSG-142] API Keys SHOULD be transferred using custom HTTP headers. They SHOULD NOT be transferred
using query parameters.

[RSG-143] API Keys SHOULD be randomly generated.

91 While there is an overhead w ith the use of public key cryptography and certif icates, certif icate-based mutual
authentication should be used w hen a Web API requires stronger authentication than offered by API keys to provide
additional security. Secure and trusted certif icates must be issued by a mutually trusted certif icate authority (CA) through a

https://wipo.int/api/patents?apiKey=a53f435643de32

CWS/8/2

附件第 30 页

trust establishment process or cross-certif ication. To mitigate identity security risks peculiar to sensitive systems and
privileged actions, strong authentication can be leveraged. Certif icates shared between the client and the server should be
used, for example X.509.

[RSG-144] Secure and trusted certif icates MUST be issued by a mutually trusted certif icate authority (CA) through a
trust establishment process or cross-certif ication.

[RSG-145] Certif icates shared between the client and the server SHOULD be used to mitigate identity security risks
particular to sensitive systems and privileged actions, for example X.509.

 [RSG-146] For highly privileged services, two-way mutual authentication betw een the client and the server SHOULD
use certif icates to provide additional protection.

[RSG-147] Multi-factor authentication SHOULD be implemented to mitigate identity risks for application w ith a high-
risk profile, a system processing very sensitive information or a privileged action.

Availability and threat protection

92 Availability in this context covers threat protection to minimize API dow ntime, looking at how threats against exposed
APIs can be mitigated using basic design principles. Availability also covers scaling to meet demand and ensuring the
hosting environments are stable etc. These levels of availability are addressed across the hardware and software stacks
that support the delivery of APIs. Availability is normally addressed under business continuity and disaster recovery
standards that recommend a risk assessment approach to define the availability requirements.

 Cross-domain Requests

93 Certain "cross-domain" requests, notably Ajax requests, are forbidden by default by the same-origin security policy.
Under the same-origin policy, a w eb browser permits scripts contained in a f irst web page to access data in a second w eb
page, only if both w eb pages have the same origin (i.e. combination of URI scheme, host name, and port number).

94 The Cross-Origin Resource Sharing (CORS) is a W3C standard to f lexibly specify which Cross-Domain Requests
are permitted. By delivering appropriate CORS HTTP headers, your REST API signals to the brow ser which domains or
origins are allow ed to make JavaScript calls to the REST service.

95 The JSON w ith padding (JSONP) is a method for sending JSON data w ithout worrying about cross-domain request
issues. It introduces callback functions for the loading of JSON data from different domains. The idea behind it is based on
the fact that the HTML <script> tag is not affected by the same origin policy. Anything imported through this tag is
executed immediately in the global context. Instead of passing in a JavaScript f ile, one can pass in a URL to a service that
returns JavaScript code.

96 The follow ing approaches are usually followed to bypass this restriction:

− JSONP is a w orkaround for cross-domain requests. It does not offer any error-detection mechanism, i.e. if
there w as an issue and the service failed or responded with an HTTP error, there is no w ay to determine w hat
the issue w as on the client side. The result w ill be that the AJAX application w ill just ‘hang’. Moreover, the
site that uses JSONP w ill unconditionally trust the JSON provided from a different domain;

− Iframe is an alternative w orkaround for cross-domain requests. Using the JavaScript window.postMessage
(message, targetOrigin) method on the iframe object, it is possible to pass a request a site of a
different domain. Iframe approach has good compatibility even in old brow sers. Moreover, it only supports
GET. The source of the Iframes page should be alw ays be checked due to security issues; and

− CORS is a standardized approach to perform a call to an external domain. It can use XMLHttpRequest to
send and receive data and has better error handling mechanism than JSONP. It supports many types of
authorization in comparison to JSONP, w hich only supports cookies. It also supports HTTP Methods in
comparison to JSONP, w hich only supports GET. On the other hand, it is not alw ays possible to implement
CORS because the brow sers have to support it and because the API consumers have to be enlisted in the
CORS w hitelist.

[RSG-148] If the REST API is public, the HTTP header Access-Control-Allow-Origin MUST be set to ‘*’.

[RSG-149] If the REST API is protected, CORS SHOULD be used, if possible. Else, JSONP MAY be used as
fallback but only for GET requests, for example, w hen the user is accessing using an old brow ser. Iframe SHOULD
NOT be used.

CWS/8/2

附件第 31 页

API Maturity Model

97 It is common to classify a REST API using a maturity model. While various models are available, this Standard
refers to the Richardson Maturity Model (RMM). RMM defines three levels and this Standard recommends Level 2 for REST
API because Level 3 is complex to implement and requires signif icant conceptual and development-related investment from
service providers and consumers. At the same time, it does not immediately benefit service consumers.

98 If a Web API implements Level 3 of RMM, a hypermedia format must be put in place. Hypertext Application
Language (HAL) 15 is simple and is compatible w ith JSON and XML responses. However it is only a draft recommendation,
along w ith other hypermedia formats, such as JSON-LD16. JSON-Schema17 should be used because as although there is
currently no specif ication for Level 3 of RMM, this is considered the most mature. The follow ing hypermedia formats should
not be considered: IETF RFC 5988 and Collection+JSON.,

99 It is recommended that instances described by a schema provide a link to a dow nloadable JSON Schema using the link
relation "describedby", as defined by Linked Data Protocol 1.0, section 8.1 [W3C.REC-ldp-20150226]18.

In HTTP, such links can be attached to any response using the Link header [RFC8288]. An example of such a header
w ould be:

Link: <http://example.com/my-hyper-schema#>; rel="describedby"

[RSJ-150] If using instances described a schema, the Link header SHOULD be used to provide a link to a
dow nloadable JSON schema ACCORDING TO RFC8288.

 [RSJ-151] A Web API SHOULD implement at least Level 2 (Transport Native Properties) of RMM. Level 3
(Hypermedia) MAY be implemented to make the API completely discoverable.

100 A custom hypermedia format may be designed. In w hich case, a set of attributes is recommended. For example:

{

 "link": {

 "href": "/patents",

 "rel": "self"

 },

 ...

 }

[RSJ-152] For designing a custom hypermedia format the follow ing set of attributes SHOULD be used enclosed into an
attribute link:

− href – the target URI;
− rel – the meaning of the target URI;
− self – the URI references the resource itself ;
− next – the URI references the previous page (if used during pagination);
− previous – the URI references the next page (if used during pagination); and
− arbitrary name v denotes the custom meaning of a relation.

SOAP WEB API

101 This standard recommends the REST architectural style as the preferred approach to API design. RESTful
architectures are generally simpler to design, extend, integrate than SOAP. Coverage of SOAP is included here for
completeness; examples and use cases are not provided.

15 https://tools.ietf.org/html/draft-kelly-json-hal-08t
16 https://www.w3.org/TR/json-ld/
17 https://json-schema.org/specification.html#specification-documents
18 http://json-schema.org/latest/json-schema-core.html#hypermedia

https://tools.ietf.org/html/draft-kelly-json-hal-08t
https://www.w3.org/TR/json-ld/
https://json-schema.org/specification.html#specification-documents
http://json-schema.org/latest/json-schema-core.html#hypermedia

CWS/8/2

附件第 32 页

102 A SOAP Web API is a software application identif ied by URI, w hose interfaces and binding are capable of being
defined, described, and discovered by XML artifacts. It also supports direct interactions with other software applications
using XML-based messages, via internet protocols such as SOAP and HTTP.

103 A SOAP-based contract is described in a Web Service Definition Language (WSDL), a W3C standard document.
Throughout this document “Web Service Contract WSDL document” w ill be referred as just “WSDL”.

104 When creating w eb services, there are two development styles: Contract Last and Contract First. When using a
contract-last approach, you start with the code, and let the w eb service contract be generated from that. When using
contract-first, you start with the WSDL contract, and use code to implement said contract.

General Rules

105 The Web Service Interoperability (WS-I) Profile is one of the most important standards in regards to SOAP-based
APIs, and it provides a minimum foundation for w riting Web Services that can w ork together. WS-I provides a guideline on
how services are “exposed” to each other and how they transfer information (referred to as ‘messaging’). It is a profile for
implementing specif ic versions of some of the most important Web Service standards such as WSDL, SOAP, XML, etc.
Adhering to certain profiles implicitly indicates adhering to specif ic versions of these Web Services standards. WS-I Basic
Profile v1.1 provides guidance for using XML 1.0, HTTP 1.1, UDDI, SOAP 1.1, WSDL 1.1, and UDDI 2.0. WS-I Basic Profile
2.0 provides guidance for using SOAP 1.2, WSDL 1.1, UDDI 2.0, WS-Addressing, and MTOM. SOAP 1.2 provides a clear
processing model and leads to better interoperability. WSDL 2.0 w as designed to solve the interoperability issues found in
WSDL 1.1 by using improved SOAP 1.2 bindings.

[WS-01] All WSDLs MUST conform to WS-I Basic Profile 2.0. WSDL 1.2 MAY be used.

106 A WSDL SOAP binding can be either a Remote Procedure Call (RPC) style binding or a document-style binding. A
SOAP binding can also have an encoded use or a literal use. This gives you f ive style/use models: RPC/encoded,
RPC/literal, document/encoded, document/literal, document/literal w rapped.

[WS-02] Services MUST follow document-style binding and literal use models (either document/literal or
document/literal w rapped). When there are graphs, the RPC/encoded style MUST be used.

[WS-03] When there are exceptional use cases, such as when there are overloaded operations in the WSDL, all
the other styles SHOULD be used.

107 The concrete WSDL should be separated from the abstract WSDL in order to provide a more modular and f lexible
interface. The abstract WSDL defines data types, messages, operation, and the port type. The concrete WSDL defines the
binding, port and service.

[WS-04] The WSDL SHOULD be separated into an abstract and a concrete part.

[WS-05] All data types SHOULD be defined in an XSD file and imported in the abstract WSDL.

[WS-06] The concrete WSDL MUST define only one service with one port.

Schemas

108 Schemas used in the WSDL must be compliant w ith WIPO Standard ST.96 Standard. For re-use purposes and
modularity, a schema must be a separate document that is either included or imported into the WSDL, instead of defining
directly it in the WSDL. This w ill permit changes in XML structure without changing the WSDL.

[WS-07] The schema defined in the wsdl:types element MUST be imported from a self-standing schema file, to
allow modularity and re-use.

[WS-08] Import of an external schema MUST be implemented using an xsd:import technique, not an
xsd:include.

[WS-09] Element xsd:any MUST NOT be used to specify a root element in the message body.

[WS-10] The target namespace for the WSDL (attribute targetNamespace on wsdl:definitions) MUST be
different from the target namespace of the schema (attribute targetNamespace on xsd:schema).

CWS/8/2

附件第 33 页

[WS-11] The requests and responses (naming convention, message format, data structure, and data dictionary)
SHOULD follow WIPO Standard ST.96.

Naming and Versioning

109 Appropriate naming conventions should also be applied w hen naming Services and WSDL elements. Naming
conventions should follow those implemented in WIPO Standard ST.96.

[WS-12] Services MUST be named in UpperCamelCase and have a 'Service' suff ix, for example
https://wipo.int/PatentsService.

[WS-13] WSDL elements message, part, portType, operation, input, output, and binding SHOULD be named in
UpperCamelCase.

[WS-14] Request message names SHOULD have a ‘Request’ suff ix.

[WS-15] Response message names SHOULD have a ‘Response’ suff ix.

[WS-16] Operation names SHOULD follow the format of <Verb><Object>{<Qualifier>}, where <Verb>
indicates the operation (preferably Get, Create, Update, or Delete w here applicable) on the <Object> of the
operation, optionally f inally follow ed by a <Qualifier> of the <Object>.

110 All operation names w ill have at least tw o parts. An optional third part may be included to further clarify and/or
specify the business purpose of the operation. The three parts are: <Verb> <Object> <Qualifier - Optional>.
Each part w ill be described in detail below .

Verb – Each operation name w ill start w ith a verb. The verb examples in common usage are described below :

Verb Description Example

Get Get a single object GetBibData

Create Get a new object CreateBibData

Update Update an object UpdateBibData

Delete Delete an object DeleteCustomer

Object – A noun follow ing a verb will be a succinct and unambiguous description of the business function the
operation is providing. The goal is to provide consumers with a better understanding of what the operation does
w ith no ambiguity. Given that the definition of some entities are not common across the various cost centers, the
object may be a composite f ield w ith the f irst node being the cost center and the second node the entity, for
example, PatentCustomer.

Qualifier – The purpose of the object qualif ier (optional) attribute is, to further clarify the business domain or
subject area, for example, GetCustomerList. Get denotes the operation to be acted upon the Customer and
List further describes the fact that the intention is to get a list of Customers not just one customer as in
GetCustomer.

111 According to the service-oriented design principles, service providers and consumers should evolve independently.
The service consumer should not be affected from minor (backward compatible) changes by the service provider.
Therefore, service versioning should use only major version numbers. For internal APIs (for example, for development and
testing) minor versions may also be used such as Semantic Versioning.

[WS-17] The name of the WSDL file SHOULD conform the follow ing pattern: <service name>_V<major
version number>

[WS-18] The namespace of the WSDL file SHOULD contain the service version; for
example https://wipo.int/PatentsService/V1”

112 The description of service and its operations is provided as WSDL documentation.

[WS-19] Element wsdl:documentation SHOULD be used in WSDL w ith description of service (as the f irst child
of wsdl:definitions in the WSDL) and its operations.

CWS/8/2

附件第 34 页

Web Service Contract Design

113 A Web Service Contract should include a technical interface comprised of a Web Service Definition Language
(WSDL), XML Schema definitions, WS-Policy descriptions as w ell as a non-technical interface comprised of one or more
service description documents.

114 The WSDL, part of the “Service Contract,” must be designed prior to any code development. No WSDL should ever
be auto-generated from the code. The motto is “Contract First” and NOT “Code First”. All Web Service Contracts must
conform to Web Service Interoperability Basic Profile (WS-I BP). Any project that auto-generates from code w ill be liable to
amendments to ensure conformance to these standards.

Attaching Policies to WSDL Definitions

115 Web Service Contracts can be extended w ith security policies that express additional constraints, requirements, and
qualities that typically relate to the behaviors of services. Security policies can be human-readable and become part of a
supplemental service-level agreement, or can be machine-readable processed at runtime. Machine-readable policies are
defined using the WS-Policy language and related WS-Policy specif ications.

[WS-20] Policy expressions MUST be isolated into a separate WS-Policy definition document, w hich is then
referenced within the WSDL document via the wsp:PolicyReference element.

[WS-21] Global or domain-specif ic policies SHOULD be isolated and applied to multiple services.

[WS-22] Policy attachment points SHOULD conform the WSDL 1.1 or later version, preferably version 2.0,
attachment point elements and corresponding policy subjects (service, endpoint, operation, and message).

SOAP – Web Service Security

116 Web Services Security (WSS): SOAP Message Security is a set of enhancements to SOAP messaging that provides
message integrity and confidentiality. WSS: SOAP Message Security is extensible, and can accommodate a variety of
security models and encryption technologies. WSS: SOAP Message Security provides three main mechanisms that can be
used independently or together:

− The ability to send security tokens as part of a message, and for associating the security tokens with message
content;

− The ability to protect the contents of a message from unauthorized and undetected modif ication (message
integrity); and

− The ability to protect the contents of a message from unauthorized disclosure (message confidentiality).

WSS: SOAP Message Security can be used in conjunction w ith other Web service extensions and application-specif ic
protocols to satisfy a variety of security requirements.

[WS-23] Web Services using SOAP message SHOULD be protected accordance with WSS:SOAP Standard
recommendations.

DATA TYPE FORMATS

117 This Standard recommends primitive data type formats such as time, date and language to be consistent w ith the
recommendations of WIPO Standard ST.96 w hich are used both for XML and JSON requests and responses and for query
parameters.

[CS-01] Time objects MUST be formatted as specif ied in IETF RFC 3339 (it is a profile of ISO 8601).

[CS-02] Time zone information SHOULD be used as specif ied in IETF RFC 3339. For example: 20:54:21+00:00

[CS-03] Date objects MUST be formatted as specif ied in IETF RFC 3339 (it is a profile of ISO 8601). For example:
2018-10-19

[CS-04] Datetime (i.e. timestamp) objects MUST be formatted as specif ied in IETF RFC 3339 (it is a profile of ISO
8601).

CWS/8/2

附件第 35 页

[CS-05] The relevant time zone SHOULD be used as specif ied in IETF RFC 3339. For example: 2017-02-
14T20:54:21+00:00

[CS-06] ISO 4217-Alpha (3-Letter Currency Codes) MUST be used for Currency Codes. The precision of the value
(i.e. number of digits after the decimal point) MAY vary depending on the business requirements.

[CS-07] WIPO Standard ST.3 tw o-letter codes be used for representing IPOs, states, other entities, organizations
and for priority and designated countries/organizations.

[CS-08] ISO 3166-1-Alpha-2 Code Elements (2 letter country codes) MUST be used for the representation of the
names of countries, dependencies, and other areas of particular geopolitical interest, on the basis of lists of country
names obtained from the United Nations.

[CS-09] ISO 639-1 (2-Letter Language Codes) MUST be used for Language Codes.

[CS-10] Units of Measure SHOULD use the units of measure as described in The Unif ied Code for Units of Measure
(based on ISO 80000 definitions). For example, for weight measuring using kilograms (kg)

[CSJ-11] Characters used in enumeration values MUST be restricted to the follow ing set: {a-z, A-Z, 0-9, period (.),
comma (,), spaces (), dash (-) and underscore (_).

[CSJ-12] The Representational Terms in Annex VI MUST be used for atomic property names.

[CSJ-13] Acronyms and abbreviations appearing at the beginning of a property name MUST be in low er case.
Otherw ise all values of an enumeration, acronyms and abbreviation values MUST appear in upper case.

CONFORMANCE

118 This Standard is designed as a set of design rules and conventions that can be layered on top of existing or new
Web Service APIs to provide common functionality. Not all services will support all of the conventions defined in the
Standard due to business (for example, QoS may not be required) or technical constraints (for example, OAuth 2.0 may
already be used).

119 This Standard defines tw o levels of conformance: A and AA Conformance Levels. Note that rules indicates by MAY
are not considered important w hen determining conformance.

120 The Web Service APIs are encouraged to support as much additional functionality beyond their level of conformance
as is appropriate for their intended scenario.

121 Tw o conformance levels are defined:

− Level A: For Level A conformance, the API indicates that the required general design rules (RSG), w hich are
identif ied as ‘MUST’ in this Standard, are follow ed. In addition, the rules specif ic to the type of response
returned must also be complied w ith, In other w ords, the following conformance sub-level are indicated:

o Level AJ: returning a JSON response, must comply w ith all general level rules (RSG) identif ied
as MUST as w ell as all JSON specif ic rules (RSJ) identif ied as MUST;

o Level AX: returning an ST.96 XML instance, must comply w ith all general level rules (RSG)
identif ied as MUST as w ell as all XML specif ic rules (RSX) identif ied as MUST; and

o Level A: returning either a JSON or XML response, must comply w ith all general level rules
(RSG) identif ied as MUST as w ell as all JSON specif ic rules (RSJ) identif ied as MUST and all
XML specif ic rules (RSX) identif ied as MUST.

− Level AA: For Level AA conformance, the API indicates that is Level A compliant and all the recommended
design rules, w hich are identif ied as ‘SHOULD’ in this Standard, are follow ed. As with Level A, there are sub-
levels dependent upon the type of response:

o Level AAJ: Level AJ compliance as w ell as the recommended SHOULD rules applicable to a
JSON response; and

o Level AAX: Level AX compliance as w ell as the recommended SHOULD rules applicable to an
XML response.

122 The traceability matric betw een the design rules and the conformance levels is listed in Annex I.

CWS/8/2

附件第 36 页

REFERENCES

WIPO Standards
ST.3 – “Tw o-letter codes for the representation of states, other entities and organizations”
WIPO ST.96 – “Processing of Industrial Property information using XML”

Standards and Conventions

− IEFT RFC 2119: Key w ords for use in RFCs to Indicate Requirement Levels – www.ietf.org/rfc/rfc2119.txt
− IEFT RFC 3339: Date and Time on the Internet: Timestamps – www.ietf.org/rfc/rfc3339.txt
− IEFT RFC 3986: Uniform Resource Identif ier (URI): Generic Syntax – w ww.ietf.org/rfc/rfc3986.txt
− IEFT RFC 5789: PATCH Method for HTTP – https://tools.ietf.org/rfc/rfc5789.txt
− IEFT RFC 5988: Web Linking – https://tools.ietf.org/rfc/rfc5988.txt
− IEFT RFC 6648: Deprecating the "X-" Prefix and Similar Constructs in Application Protocols

– https://tools.ietf.org/rfc/rfc6648.txt
− IEFT RFC 6750: The OAuth 2.0 Authorization Framew ork: Bearer Token Usage

– https://tools.ietf.org/rfc/rfc6750.txt
− IEFT RFC 7231: Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content

– www.ietf.org/rfc/rfc7231.txt
− IEFT RFC 7232: Hypertext Transfer Protocol (HTTP/1.1) – Conditional Requests www.ietf.org/rfc/rfc7232.txt
− IEFT RFC 7234: Hypertext Transfer Protocol (HTTP/1.1) – Caching w ww.ietf.org/rfc/rfc7234.txt
− IEFT RFC 7386: JSON Merge Patch – www.ietf.org/rfc/rfc7386.txt.
− IEFT RFC 7240: Prefer Header for HTTP – https://tools.ietf.org/rfc/rfc7240.txt
− IEFT RFC 7519: JSON Web Token – www.ietf.org/rfc/rfc7519.txt
− IEFT RFC 7540: Hypertext Transfer Protocol Version 2 (HTTP/2) – https://tools.ietf.org/html/rfc7540
− IEFT BCP-47: Tags for Identifying Languages – https://tools.ietf.org/rfc/bcp/bcp47.txt.
− ISO 639-1: Language codes – https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
− ISO 3166-1 alpha-2: Tw o-letter acronyms for country codes – https://en.wikipedia.org/wiki/ISO_3166-1_alpha-

2
− ISO 3166-1 alpha-3: Three-letter acronyms for country codes – https://en.wikipedia.org/wiki/ISO_3166-

1_alpha-3
− ISO 4217: Currency Codes – w ww.iso.org/iso/home/standards/currency_codes.htm
− ISO 8601: Date and Time Formats – https://en.w ikipedia.org/wiki/ISO_8601
− OData - https://www.odata.org/
− OASIS OData Metadata Service Entity Model – http://docs.oasis-

open.org/odata/odata/v4.0/os/models/MetadataService.edmx.
− OASIS OData JSON Format Version 4.0. Edited by Ralf Handl, Michael Pizzo, and Mark Biamonte. Latest

version – http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html.
− OASIS OData Atom Format Version 4.0. Edited by Martin Zurmuehl, Michael Pizzo, and Ralf Handl. Latest

version – http://docs.oasis-open.org/odata/odata-atom-format/v4.0/odata-atom-format-v4.0.html.
− OASIS OData "OData Version 4.0 Part 1: Protocol– http://docs.oasis-open.org/odata/odata/v4.0/os/part1-

protocol/odata-v4.0-os-part1-protocol.html.
− OASIS OData Version 4.0 Part 2: URL Conventions – http://docs.oasis-open.org/odata/odata/v4.0/os/part2-

url-conventions/odata-v4.0-os-part2-url-conventions.html.
− OASIS OData Version 4.0 Part 3: Common Schema Definition Language (CSDL) – http://docs.oasis-

open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html.
− OASIS ABNF components: OData ABNF Construction Rules Version 4.0 and OData ABNF Test

Cases – http://docs.oasis-open.org/odata/odata/v4.0/os/abnf/
− OASIS Vocabulary components: OData Core Vocabulary, OData Measures Vocabulary and OData

Capabilities Vocabulary – http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/
− OASIS XML schemas: OData EDMX XML Schema and OData EDM XML Schema– http://docs.oasis-

open.org/odata/odata/v4.0/os/schemas/
− OASIS SAML 2.0 – http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
− RAML (ReSTful API Modeling Language) – http://raml.org
− OpenAPI Initiative – www.openapis.org
− Richardson’s REST API Maturity Model – https://martinfowler.com/articles/richardsonMaturityModel.html
− HAL – http://stateless.co/hal_specification.html
− JSON-LD – https://json-ld.org
− Collection+JSON - Document Format – http://amundsen.com/media-types/collection/format/
− BadgerFish – http://badgerfish.ning.com/
− Semantic Versioning – https://semver.org/
− REST – https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
− CQL – https://en.wikipedia.org/wiki/Contextual_Query_Language
− Z39.50 – https://www.loc.gov/z3950/agency/Z39-50-2003.pdf
− WS-I Basic Profile 2.0 – http://w s-i.org/profiles/basicprofile-2.0-2010-11-09.html
− W3C SOAP 1.2 Part 1: Messaging Framew ork – https://www.w3.org/TR/soap12-part1/
− W3C SOAP 1.2 Part 2: Adjuncts – https://www.w3.org/TR/soap12-part2/

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc3339.txt
http://www.ietf.org/rfc/rfc3986.txt
https://tools.ietf.org/rfc/rfc5789.txt
https://tools.ietf.org/rfc/rfc5988.txt
https://tools.ietf.org/rfc/rfc6648.txt
https://tools.ietf.org/rfc/rfc6750.txt
http://www.ietf.org/rfc/rfc7231.txt
http://www.ietf.org/rfc/rfc7232.txt
http://www.ietf.org/rfc/rfc7234.txt
http://www.ietf.org/rfc/rfc7386.txt
https://tools.ietf.org/rfc/rfc7240.txt
http://www.ietf.org/rfc/rfc7519.txt
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/rfc/bcp/bcp47.txt
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3
http://www.iso.org/iso/home/standards/currency_codes.htm
https://en.wikipedia.org/wiki/ISO_8601
https://www.odata.org/
http://docs.oasis-open.org/odata/odata/v4.0/os/models/MetadataService.edmx
http://docs.oasis-open.org/odata/odata/v4.0/os/models/MetadataService.edmx
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-atom-format/v4.0/odata-atom-format-v4.0.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html
http://docs.oasis-open.org/odata/odata/v4.0/os/abnf/
http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/
http://docs.oasis-open.org/odata/odata/v4.0/os/schemas/
http://docs.oasis-open.org/odata/odata/v4.0/os/schemas/
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
http://raml.org/
http://www.openapis.org/
https://martinfowler.com/articles/richardsonMaturityModel.html
http://stateless.co/hal_specification.html
https://json-ld.org/
http://amundsen.com/media-types/collection/format/
http://badgerfish.ning.com/
https://semver.org/
https://www.ics.uci.edu/%7Efielding/pubs/dissertation/rest_arch_style.htm
https://en.wikipedia.org/wiki/Contextual_Query_Language
https://www.loc.gov/z3950/agency/Z39-50-2003.pdf
http://ws-i.org/profiles/basicprofile-2.0-2010-11-09.html
https://www.w3.org/TR/soap12-part1/
https://www.w3.org/TR/soap12-part2/

CWS/8/2

附件第 37 页

− W3C WSDL Version 2.0 Part 1: Core Language – https://www.w3.org/TR/wsdl20/
− W3C CORS - https://www.w3.org/TR/cors/
− W3C Matric Parameters – https://www.w3.org/DesignIssues/MatrixURIs.html

IP Offices’ REST APIs

− EPO – Open Patent Services OPS v 3.2 https://developers.epo.org
− USPTO – PatentsView http://www.patentsview.org/api/doc.html
− WIPO – ePCTv1.1 https://pct.wipo.int/
− EUIPO – TMview , Designview , TMclass http://www.tm-xml.org/TM-XML/TM-XML_xml/TM-XML_TM-

Search.xml

Industry REST APIs and Design Guidelines

− Facebook – https://developers.facebook.com/docs/graph-api/reference
− GitHub – https://developer.github.com/v3
− Google APIs Design Guide – https://cloud.google.com/apis/design/
− Azure – https://docs.microsoft.com/en-us/rest/api/
− OpenAPI – https://swagger.io/docs/specification/about/
− OData – http://www.odata.org/documentation/
− JSON API – http://jsonapi.org/format/
− Microsoft API Design – https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design
− JIRA REST API – https://developer.atlassian.com/server/jira/platform/jira-rest-api-examples
− Confluece REST API – https://developer.atlassian.com/server/confluence/
− Ebay API – https://developer.ebay.com/api-docs/static/ebay-rest-landing.html
− Oracle REST Data Services – http://www.oracle.com/technetwork/developer-tools/rest-data-

services/overview/index.html
− PayPal REST API – https://developer.paypal.com/docs/api/overview/
− Data on the Web Best Practices – https://www.w3.org/TR/dwbp/#intro
− SAP Guidelines for Future REST API Harmonization

– https://d.dam.sap.com/m/xAUymP/54014_GB_54014_enUS.pdf
− GitHub API – https://developer.github.com/v3/
− Zalando – https://github.com/zalando/ReSTful-api-guidelines
− Dropbox – https://www.dropbox.com/developers
− Tw itter – https://developer.twitter.com/en/docs

Others

− CQRS – https://martinfowler.com/bliki/CQRS.html
− ITU – https://www.itu.int/en/ITU-T/ipr/Pages/open.aspx
− OWASP Rest Security Cheat Sheet – https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
− DDD – https://martinfowler.com/bliki/BoundedContext.html
− REST Principles – https://en.wikipedia.org/wiki/Representational_state_transfer
− Open/Closed Principle – https://en.wikipedia.org/wiki/Open/closed_principle
− Which style of WSDL should I use? – https://www.ibm.com/developerworks/library/ws-whichwsdl/
− https://www.ict.govt.nz/guidance-and-resources/standards-compliance/api-standard-and-guidelines/
− http://www.sabsa.org/node/69
− https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
− https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
− https://www.owasp.org/index.php/Security_by_Design_Principles
− https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
− https://www.owasp.org/index.php/OWASP_API_Security_Project
− https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet
− https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
− https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
− https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.186-4.pdf
− http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
− SOA Principles of Service Design, Thomas Erl (2008)

[Annex I of ST.XX follow s]

https://www.w3.org/TR/wsdl20/
https://www.w3.org/TR/cors/
https://www.w3.org/DesignIssues/MatrixURIs.html
https://developers.epo.org/
http://www.patentsview.org/api/doc.html
https://pct.wipo.int/
http://www.tm-xml.org/TM-XML/TM-XML_xml/TM-XML_TM-Search.xml
http://www.tm-xml.org/TM-XML/TM-XML_xml/TM-XML_TM-Search.xml
https://developers.facebook.com/docs/graph-api/reference
https://developer.github.com/v3
https://cloud.google.com/apis/design/
https://docs.microsoft.com/en-us/rest/api/
https://swagger.io/docs/specification/about/
http://www.odata.org/documentation/
http://jsonapi.org/format/
https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design
https://developer.atlassian.com/server/jira/platform/jira-rest-api-examples/#getting-metadata-for-creating-issues-examples
https://developer.atlassian.com/server/confluence/
https://developer.ebay.com/api-docs/static/ebay-rest-landing.html
http://www.oracle.com/technetwork/developer-tools/rest-data-services/overview/index.html
http://www.oracle.com/technetwork/developer-tools/rest-data-services/overview/index.html
https://developer.paypal.com/docs/api/overview/
https://www.w3.org/TR/dwbp/#intro
https://d.dam.sap.com/m/xAUymP/54014_GB_54014_enUS.pdf
https://developer.github.com/v3/
https://github.com/zalando/restful-api-guidelines
https://www.dropbox.com/developers
https://developer.twitter.com/en/docs
https://martinfowler.com/bliki/CQRS.html
https://www.itu.int/en/ITU-T/ipr/Pages/open.aspx
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://martinfowler.com/bliki/BoundedContext.html
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Open/closed_principle
https://www.ibm.com/developerworks/library/ws-whichwsdl/
https://www.ict.govt.nz/guidance-and-resources/standards-compliance/api-standard-and-guidelines/
http://www.sabsa.org/node/69
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Security_by_Design_Principles
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_API_Security_Project
https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.186-4.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

CWS/8/2

附件第 38 页

ANNEX I

LIST OF RESTFUL WEB SERVICE DESIGN RULES AND CONVENTIONS

Final Draft

Proposal by the API Task Force for consideration at the CWS/8

The follow ing tables summarize service design rules and conventions, and identif ies basic conformance requirements in
terms of w hich conformance level, Web Services API implementation support. The follow ing is a guide to the tables below :

Table 1 provides a summary of rules that must be complied with in order to achieve a Level AJ compliance
(for a JSON response);

− Table 2 provides a summary of design rules that must be complied w ith in order to achieve a Level AX compliance
(for an XML response) ;

− Table 3 provides a summary of design rules that must be complied w ith in order to achieve a Level AAJ
compliance (for a JSON response); and

− Table 4 provides a summary of design rules that must be complied w ith in order to achieve a Level AAX
compliance (for an XML response).

[Editorial Note: In order achieve a Level A compliance, it is just necessary to follow rules in both Tables 1 and 2. In order to
achieve a Level AA compliance, it is necessary to follow rules in both Tables 3 and 4. The third letter indicates the type of
response provided.]

Table 1: Conformance Table JSON response
Rule ID Rule description Cross reference and remark
[RSG-01] The forward slash character “/” MUST be used in the path of the URI to

indicate a hierarchical relationship betw een resources but the path
MUST NOT end w ith a forward slash as it does not provide any
semantic value and may cause confusion.

AJ, AX, AAJ, AAX

[RSG-02] Resources name MUST be consistent in their naming pattern. AJ, AX, AAJ, AAX
[RSG-04 Query parameters MUST be consistent in their naming pattern AJ, AX
[RSG-06] The URL pattern for a Web API MUST contain the w ord “api” in the URI. AJ, AX, AAJ, AAX
[RSG-07] Matrix parameters MUST NOT be used. AJ, AX, AAJ, AAX
[RSG-08] A Web API MUST consistently apply HTTP status codes as described in

IETF RFCs
AJ, AX, AAJ, AAX

[RSG-10] If the API detects invalid input values, it MUST return the HTTP status
code “400 Bad Request”. The error payload MUST indicate the
erroneous value.

AJ, AX, AAJ, AAX

[RSG-12] If the API detects valid values that require features to not be
implemented, it MUST return the HTTP status code “501 Not
Implemented”. The error payload MUST indicate the unhandled value.

AJ, AX, AAJ, AAX

[RSG-14] If a resource can be stand-alone it MUST be a top-level resource, or
otherw ise a sub-resource.

AJ, AX, AAJ, AAX

[RSG-15] Query parameters MUST be used instead of URL paths to retrieve
nested resources.

AJ, AX, AAJ, AAX

[RSG-18] Resource names, segment and query parameters MUST be composed
of w ords in the English language, using the primary English spellings
provided in the Oxford English Dictionary. Resource names that are
localized due to business requirements MAY be in other languages.

AJ, AX, AAJ, AAX

[RSG-20] A Web API MUST support content type negotiation follow ing IETF RFC
7231.

AJ, AX, AAJ, AAX

[RSG-21] JSON format MUST be assumed w hen no specif ic content type is
requested.

AJ, AX, AAJ, AAX

[RSG-27] A Web API MUST support at least XML or JSON. AJ, AX, AAJ, AAX

CWS/8/2

附件第 39 页

[RSG-28] HTTP Methods MUST be restricted to the HTTP standard methods
POST, GET, PUT, DELETE, OPTIONS, PATCH, TRACE and HEAD, as
specif ied in IETF RFC 7231 and 5789.

AJ, AX, AAJ, AAX

[RSG-33] For an end point w hich fetches a single resource, if a resource is not
found, the method GET MUST return the status code “404 Not
Found”. Endpoints w hich return lists of resources will simply return an
empty list.

AJ, AX, AAJ, AAX

[RSG-34] If a resource is retrieved successfully, the GET method MUST return
200 OK.

AJ, AX, AAJ, AAX

[RSG-35] A GET request MUST be idempotent. AJ, AX, AAJ, AAX
[RSG-37] A HEAD request MUST be idempotent. AJ, AX, AAJ, AAX
[RSG-39] A POST request MUST NOT be idempotent according to the IETF

RFC 2616.
AJ, AX, AAJ, AAX

[RSG-43] A PUT request MUST be idempotent. AJ, AX, AAJ, AAX
[RSG-44] If a resource is not found, PUT MUST return the status code “404 Not

Found”.
AJ, AX, AAJ, AAX

[RSG-45] If a resource is updated successfully, PUT MUST return the status code
“200 OK” if the updated resource is returned or a “204 No Content” if
it is not returned.

AJ, AX, AAJ, AAX

[RSG-46] A PATCH request MUST NOT be idempotent. AJ, AX, AAJ, AAX
[RSG-48] If a resource is not found PATCH MUST return the status code “404

Not Found”.
AJ, AX, AAJ, AAX

[RSJ-49] If a Web API implements partial updates using PATCH, it MUST use the
JSON Merge Patch format to describe the partial change set, as
described in IETF RFC 7386 (by using the content type
application/merge-patch+json).

AJ, AAJ

[RSG-50] A DELETE request MUST NOT be idempotent. AJ, AX, AAJ, AAX
[RSG-51] If a resource is not found, DELETE MUST return the status code “404

Not Found”.
AJ, AX, AAJ, AAX

[RSG-52] If a resource is deleted successfully, DELETE MUST return the status
“200 OK” if the deleted resource is returned or “204 No Content” if it
is not returned.

AJ, AX, AAJ, AAX

[RSG-53] The f inal recipient is either the origin server or the f irst proxy or gateway
to receive a Max-Forw ards value of zero in the request. A TRACE
request MUST NOT include a body.

AJ, AX, AAJ, AAX

[RSG-54] A TRACE request MUST NOT be idempotent. AJ, AX, AAJ, AAX
[RSG-55] The value of the Via HTTP header f ield MUST act to track the request

chain.
AJ, AX, AAJ, AAX

[RSG-56] The Max-Forw ards HTTP header f ield MUST be used to allow the client
to limit the length of the request chain.

AJ, AX, AAJ, AAX

[RSG-58] Responses to TRACE MUST NOT be cached. AJ, AX, AAJ, AAX
[RSG-60] An OPTIONS request MUST be idempotent. AJ, AX, AAJ, AAX
[RSG-70] A Web API MUST use query parameters to implement pagination. AJ, AX, AAJ, AAX
[RSG-71] A Web API MUST NOT use HTTP headers to implement pagination. AJ, AX, AAJ, AAX
[RSG-75] In order to specify a multi-attribute sorting criterion, a query parameter

MUST be used. The value of this parameter is a comma-separated list
of sort keys and sort directions either ‘asc’ for ascending or ‘desc’ for
descending MAY be appended to each sort key, separated by the colon
‘:’ character. The default direction MUST be specif ied by the server in
case that a sort direction is not specif ied for a key.

AJ, AX, AAJ, AAX

[RSG-76] A Web API SHOULD return the sorting criteria in the response. AJ, AX, AAJ, AAX
[RSG-79] A Web API MUST support returning the number of items in a collection. AJ, AX, AAJ, AAX
[RSG-80] A query parameter MUST be used to support returning the number of

items in a collection.
AJ, AX, AAJ, AAX

[RSG-82] A Web API MAY support returning the number of items in a collection
inline, i.e. as the part of the response that contains the collection itself. A
query parameter MUST be used.

AJ, AX, AAJ, AAX

[RSG-86] A Service Contract MUST specify the grammar supported (such as
f ields, functions, keywords, and operators).

AJ, AX, AAJ, AAX

CWS/8/2

附件第 40 页

[RSG-87] The query parameter “q” MUST be used. AJ, AX, AAJ, AAX
[RSG-88] On the protocol level, a Web API MUST return an appropriate HTTP

status code selected from the list of standard HTTP Status Codes.
AJ, AX, AAJ, AAX

[RSJ-89] On the application level, a Web API MUST return a payload reporting
the error in adequate granularity. The code and message attributes are
mandatory, the details attribute is conditionally mandatory and target,
status, moreInfo, and internalMessage attributes are optional.

AJ, AX, AAJ, AAX

[RSG-90] Errors MUST NOT expose security-critical data or internal technical
details, such as call stacks in the error messages.

AJ, AX, AAJ, AAX

[RSG-91] The HTTP Header: Reason-Phrase (described in RFC 2616) MUST
NOT be used to carry error messages.

AJ, AX, AAJ, AAX

[RSG-93] A Service Contract format MUST include the follow ing:
− API version;
− Information about the semantics of API

elements;
− Resources;
− Resource attributes;
− Query Parameters;
− Methods;
− Media types;
− Search grammar (if one is supported);
− HTTP Status Codes;
− HTTP Methods;
− Restrictions and distinctive features; and
− Security (if any).

AJ, AX, AAJ, AAX

[RSG-95] A REST API MUST provide API documentation as a Service Contract. AJ, AX, AAJ, AAX
[RSG-96] A Web API implementation deviating from this Standard MUST

be explicitly documented in the Service Contract. If a deviating rule is
not specif ied in the Service Contract, it MUST be assumed that this
Standard is follow ed.

AJ, AX, AAJ, AAX

[RSG-97] A Service Contract MUST allow API client skeleton code generation. AJ, AX, AAJ, AAX
[RSG-105] A Web API MUST support caching of GET results; a Web API MAY

support caching of results from other HTTP Methods.
AJ, AX, AAJ

[RSG-113] If a Web API supports preference handling, the nomenclature of
preferences that MAY be set by using the Prefer header MUST be
recorded in the Service Contract.

AAJ, AAX, AJ, AX

[RSG-114] If a Web API supports localized data, the request HTTP header
Accept-Language MUST be supported to indicate the set of natural
languages that are preferred in the response as specif ied in IETF RFC
7231.

AJ, AX, AAJ, AAX

[RSG-116] Confidentiality: APIs and API Information MUST be identif ied, classif ied,
and protected against unauthorized access, disclosure and
eavesdropping at all times. The least privilege, zero trust, need to know
and need to sharei principles MUST be follow ed.

AJ, AX, AAJ, AAX

[RSG-117] Integrity-Assurance: APIs and API Information MUST be protected
against unauthorized modif ication, duplication, corruption and
destruction. Information MUST be modif ied through approved
transactions and interfaces. Systems MUST be updated using approved
configuration management, change management and patch
management processes.

AJ, AX, AAJ, AAX

[RSG-118] Availability: APIs and API Information MUST be available to authorized
users at the right time as defined in the Service Level Agreements
(SLAs), access-control policies and defined business processes.

AJ, AX, AAJ, AAX

[RSG-119] Non-repudiation: Every transaction processed or action performed by
APIs MUST enforce non-repudiation through the implementation of
proper auditing, authorization, authentication, and the implementation of
secure paths and non-repudiation services and mechanisms.

AJ, AX, AAJ, AAX

[RSG-120] Authentication, Authorization, Auditing: Users, systems, APIs or devices
involved in critical transactions or actions MUST be authenticated,
authorized using role-based or attribute based access-control services
and maintain segregation of duty. In addition, all actions MUST be
logged and the authentication’s strength must increase w ith the
associated information risk.

AJ, AX, AAJ, AAX

CWS/8/2

附件第 41 页

[RSG-121] While developing APIs, threats, malicious use cases, secure coding
techniques, transport layer security and security testing MUST be
carefully considered, especially:

− PUTs and POSTs – i.e.: w hich change to internal data
could potentially be used to attack or misinform;

− DELETES – i.e.: could be used to remove the contents of
an internal resource repository;

− Whitelist allow able methods- to ensure that allow able
HTTP Methods are properly restricted while others would
return a proper response code; and

− Well know n attacks should be considered during the
threat-modeling phase of the design process to ensure
that the threat risk does not increase. The threats and
mitigation defined w ithin OWASP Top Ten Cheat
Sheet MUST be taken into consideration.

AJ, AX, AAJ, AAX

[RSG-122] While developing APIs, the standards and best practices listed below
SHOULD be follow ed:

− Secure coding best practices: OWASP Secure Coding
Principles;

− Rest API security: REST Security Cheat Sheet
− Escape inputs and cross site scripting protection: OWASP

XSS Cheat Sheet;
− SQL Injection prevention: OWASP SQL Injection Cheat

Sheet, OWASP Parameterization Cheat Sheet; and
− Transport layer security: OWASP Transport Layer

Protection Cheat Sheet.

AJ, AX, AAX, AAJ

[RSG-123] Security testing and vulnerability assessment MUST be carried out to
ensure that APIs are secure and threat-resistant. This requirement MAY
be achieved by leveraging Static and Dynamic Application Security
Testing (SAST/DAST), automated vulnerability management tools and
penetration testing.

AJ, AX, AAX, AAJ

[RSG-124] Protected services MUST only provide HTTPS endpoints using TLS 1.2,
or higher, w ith a cipher suite that includes ECDHE for key exchange.

AJ, AX, AAJ, AAX

[RSG-130] Anonymous authentication MUST only be used w hen the customers and
the application they are using accesses information or feature with a low
sensitivity level w hich should not require authentication, such as, public
information.

AJ, AX, AAJ, AAX

[RSG-131] Username and password or password hash authentication MUST NOT
be allow ed.

AJ, AX, AAJ, AAX

[RSG-141] API Keys MUST be revoked if the client violates the usage agreement,
as specif ied by the IP Office.

AJ, AX, AAJ, AAX

[RSG-144] Secure and trusted certif icates MUST be issued by a mutually trusted
certif icate authority (CA) through a trust establishment process or cross-
certif ication.

AJ, AX, AAJ, AAX

[RSG-145] Certif icates shared between the client and the server SHOULD be used
to mitigate identity security risks particular to sensitive systems and
privileged actions, for example X.509.

AJ, AX, AAJ, AAX

[RSG-148] If the REST API is public, the HTTP header Access-Control-Allow-Origin
MUST be set to ‘*’.

AJ, AX, AAJ, AAX

Table 2: Conformance Table XML response

Rule ID Rule description Cross reference and remark
[RSG-01] The forward slash character “/” MUST be used in the path of the URI to

indicate a hierarchical relationship betw een resources but the path
MUST NOT end w ith a forward slash as it does not provide any
semantic value and may cause confusion.

AJ, AX, AAJ, AAX

[RSG-02] Resources name MUST be consistent in their naming pattern. AJ, AX, AAJ, AAX
[RSG-04] Query parameters MUST be consistent in their naming pattern AJ, AX
[RSG-06] The URL pattern for a Web API MUST contain the w ord “api” in the URI. AJ, AX, AAJ, AAX
[RSG-07] Matrix parameters MUST NOT be used. AJ, AX, AAJ, AAX
[RSG-08] A Web API MUST consistently apply HTTP status codes as described in

IETF RFCs
AJ, AX, AAJ, AAX

https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/Secure_Coding_Principles
https://www.owasp.org/index.php/Secure_Coding_Principles
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

CWS/8/2

附件第 42 页

[RSG-10] If the API detects invalid input values, it MUST return the HTTP status
code “400 Bad Request”. The error payload MUST indicate the
erroneous value.

AJ, AX, AAJ, AAX

[RSG-12] If the API detects valid values that require features to not be
implemented, it MUST return the HTTP status code “501 Not
Implemented”. The error payload MUST indicate the unhandled value.

AJ, AX, AAJ, AAX

[RSG-14] If a resource can be stand-alone it MUST be a top-level resource, or
otherw ise a sub-resource.

AJ, AX, AAJ, AAX

[RSG-15] Query parameters MUST be used instead of URL paths to retrieve
nested resources.

AJ, AX, AAJ, AAX

[RSG-18] Resource names, segment and query parameters MUST be composed
of w ords in the English language, using the primary English spellings
provided in the Oxford English Dictionary. Resource names that are
localized due to business requirements MAY be in other languages.

AJ, AX, AAJ, AAX

[RSG-20] A Web API MUST support content type negotiation follow ing IETF RFC
7231.

AJ, AX, AAJ, AAX

[RSG-21] JSON format MUST be assumed w hen no specif ic content type is
requested.

AJ, AX, AAJ, AAX

[RSG-27] A Web API MUST support at least XML or JSON. AJ, AX, AAJ, AAX
[RSG-28] HTTP Methods MUST be restricted to the HTTP standard methods

POST, GET, PUT, DELETE, OPTIONS, PATCH, TRACE and HEAD, as
specif ied in IETF RFC 7231 and 5789.

AJ, AX, AAJ, AAX

[RSG-33] For an end point w hich fetches a single resource, if a resource is not
found, the method GET MUST return the status code “404 Not
Found”. Endpoints w hich return lists of resources will simply return an
empty list.

AJ, AX, AAJ, AAX

[RSG-34] If a resource is retrieved successfully, the GET method MUST return
200 OK.

AJ, AX, AAJ, AAX

[RSG-35] A GET request MUST be idempotent. AJ, AX, AAJ, AAX
[RSG-37] A HEAD request MUST be idempotent. AJ, AX, AAJ, AAX
[RSG-39] A POST request MUST NOT be idempotent according to the IETF

RFC 2616.
AJ, AX, AAJ, AAX

[RSG-43] A PUT request MUST be idempotent. AJ, AX, AAJ, AAX
[RSG-44] If a resource is not found, PUT MUST return the status code “404 Not

Found”.
AJ, AX, AAJ, AAX

[RSG-45] If a resource is updated successfully, PUT MUST return the status code
“200 OK” if the updated resource is returned or a “204 No Content” if
it is not returned.

AJ, AX, AAJ, AAX

[RSG-46] A PATCH request MUST NOT be idempotent. AJ, AX, AAJ, AAX
[RSG-48] If a resource is not found PATCH MUST return the status code “404

Not Found”.
AJ, AX, AAJ, AAX

[RSG-50] A DELETE request MUST NOT be idempotent. AJ, AX, AAJ, AAX
[RSG-51] If a resource is not found, DELETE MUST return the status code “404

Not Found”.
AJ, AX, AAJ, AAX

[RSG-52] If a resource is deleted successfully, DELETE MUST return the status
“200 OK” if the deleted resource is returned or “204 No Content” if it
is not returned.

AJ, AX, AAJ, AAX

[RSG-53] The f inal recipient is either the origin server or the f irst proxy or gateway
to receive a Max-Forw ards value of zero in the request. A TRACE
request MUST NOT include a body.

AJ, AX, AAJ, AAX

[RSG-54] A TRACE request MUST NOT be idempotent. AJ, AX, AAJ, AAX
[RSG-55] The value of the Via HTTP header f ield MUST act to track the request

chain.
AJ, AX, AAJ, AAX

[RSG-56] The Max-Forw ards HTTP header f ield MUST be used to allow the client
to limit the length of the request chain.

AJ, AX, AAJ, AAX

[RSG-58] Responses to TRACE MUST NOT be cached. AJ, AX, AAJ, AAX
[RSG-60] An OPTIONS request MUST be idempotent. AJ, AX, AAJ, AAX
[RSG-70] A Web API MUST use query parameters to implement pagination. AJ, AX, AAJ, AAX

CWS/8/2

附件第 43 页

[RSG-71] A Web API MUST NOT use HTTP headers to implement pagination. AJ, AX, AAJ, AAX
[RSG-75] In order to specify a multi-attribute sorting criterion, a query parameter

MUST be used. The value of this parameter is a comma-separated list
of sort keys and sort directions either ‘asc’ for ascending or ‘desc’ for
descending MAY be appended to each sort key, separated by the colon
‘:’ character. The default direction MUST be specif ied by the server in
case that a sort direction is not specif ied for a key.

AJ, AX, AAJ, AAX

[RSG-76] A Web API SHOULD return the sorting criteria in the response. AJ, AX, AAJ, AAX
[RSG-79] A Web API MUST support returning the number of items in a collection. AJ, AX, AAJ, AAX
[RSG-80] A query parameter MUST be used to support returning the number of

items in a collection.
AJ, AX, AAJ, AAX

[RSG-82] A Web API MAY support returning the number of items in a collection
inline, i.e. as the part of the response that contains the collection itself. A
query parameter MUST be used.

AJ, AX, AAJ, AAX

[RSG-86] A Service Contract MUST specify the grammar supported (such as
f ields, functions, keywords, and operators).

AJ, AX, AAJ, AAX

[RSG-87] The query parameter “q” MUST be used. AJ, AX, AAJ, AAX
[RSG-88] On the protocol level, a Web API MUST return an appropriate HTTP

status code selected from the list of standard HTTP Status Codes.
AJ, AX, AAJ, AAX

[RSJ-89] On the application level, a Web API MUST return a payload reporting
the error in adequate granularity. The code and message attributes are
mandatory, the details attribute is conditionally mandatory and target,
status, moreInfo, and internalMessage attributes are optional.

AJ, AX, AAJ, AAX

[RSG-90] Errors MUST NOT expose security-critical data or internal technical
details, such as call stacks in the error messages.

AJ, AX, AAJ, AAX

[RSG-91] The HTTP Header: Reason-Phrase (described in RFC 2616) MUST
NOT be used to carry error messages.

AJ, AX, AAJ, AAX

[RSG-93] A Service Contract format MUST include the follow ing:

− API version;
− Information about the semantics of API

elements;
− Resources;
− Resource attributes;
− Query Parameters;
− Methods;
− Media types;
− Search grammar (if one is supported);
− HTTP Status Codes;
− HTTP Methods;
− Restrictions and distinctive features; and
− Security (if any).

AJ, AX, AAJ, AAX

[RSG-95] A REST API MUST provide API documentation as a Service Contract. AJ, AX, AAJ, AAX
[RSG-96] A Web API implementation deviating from this Standard MUST

be explicitly documented in the Service Contract. If a deviating rule is
not specif ied in the Service Contract, it MUST be assumed that this
Standard is follow ed.

AJ, AX, AAJ, AAX

[RSG-97] A Service Contract MUST allow API client skeleton code generation. AJ, AX, AAJ, AAX
[RSG-105] A Web API MUST support caching of GET results; a Web API MAY

support caching of results from other HTTP Methods.
AJ, AX, AAJ

[RSG-113] If a Web API supports preference handling, the nomenclature of
preferences that MAY be set by using the Prefer header MUST be
recorded in the Service Contract.

AAJ, AAX, AJ, AX

[RSG-114] If a Web API supports localized data, the request HTTP header
Accept-Language MUST be supported to indicate the set of natural
languages that are preferred in the response as specif ied in IETF RFC
7231.

AAJ, AAX, AJ, AX

[RSG-116] Confidentiality: APIs and API Information MUST be identif ied, classif ied,
and protected against unauthorized access, disclosure and
eavesdropping at all times. The least privilege, zero trust, need to know
and need to share principles MUST be follow ed.

AAJ, AAX, AJ, AX

[RSG-117] Integrity-Assurance: APIs and API Information MUST be protected
against unauthorized modif ication, duplication, corruption and

AAJ, AAX, AJ, AX

CWS/8/2

附件第 44 页

destruction. Information MUST be modif ied through approved
transactions and interfaces. Systems MUST be updated using approved
configuration management, change management and patch
management processes.

[RSG-118] Availability: APIs and API Information MUST be available to authorized
users at the right time as defined in the Service Level Agreements
(SLAs), access-control policies and defined business processes.

AAJ, AAX, AJ, AX

[RSG-119] Non-repudiation: Every transaction processed or action performed by
APIs MUST enforce non-repudiation through the implementation of
proper auditing, authorization, authentication, and the implementation of
secure paths and non-repudiation services and mechanisms.

AAJ, AAX, AJ, AX

[RSG-120] Authentication, Authorization, Auditing: Users, systems, APIs or devices
involved in critical transactions or actions MUST be authenticated,
authorized using role-based or attribute based access-control services
and maintain segregation of duty. In addition, all actions MUST be
logged and the authentication’s strength must increase w ith the
associated information risk.

AAJ, AAX, AJ, AX

[RSG-121] While developing APIs, threats, malicious use cases, secure coding
techniques, transport layer security and security testing MUST be
carefully considered, especially:

− PUTs and POSTs – i.e.: w hich change to internal data
could potentially be used to attack or misinform;

− DELETES – i.e.: could be used to remove the contents of
an internal resource repository;

− Whitelist allow able methods- to ensure that allow able
HTTP Methods are properly restricted while others would
return a proper response code; and

− Well know n attacks should be considered during the
threat-modeling phase of the design process to ensure
that the threat risk does not increase. The threats and
mitigation defined w ithin OWASP Top Ten Cheat
Sheet MUST be taken into consideration.

AAJ, AAX, AJ, AX

[RSG-122] While developing APIs, the standards and best practices listed below
SHOULD be follow ed:

− Secure coding best practices: OWASP Secure Coding
Principles;

− Rest API security: REST Security Cheat Sheet;
− Escape inputs and cross site scripting protection: OWASP

XSS Cheat Sheet;
− SQL Injection prevention: OWASP SQL Injection Cheat

Sheet, OWASP Parameterization Cheat Sheet; and
− Transport layer security: OWASP Transport Layer

Protection Cheat Sheet.

AJ, AX, AAX, AAJ

[RSG-123] Security testing and vulnerability assessment MUST be carried out to
ensure that APIs are secure and threat-resistant. This requirement MAY
be achieved by leveraging Static and Dynamic Application Security
Testing (SAST/DAST), automated vulnerability management tools and
penetration testing.

AJ, AX, AAJ, AAX

[RSG-124] Protected services MUST only provide HTTPS endpoints using TLS 1.2,
or higher, w ith a cipher suite that includes ECDHE for key exchange.

AJ, AX, AAJ, AAX

[RSG-130] Anonymous authentication MUST only be used w hen the customers and
the application they are using accesses information or feature with a low
sensitivity level w hich should not require authentication, such as, public
information.

AJ, AX, AAJ, AAX

[RSG-131] Username and password or password hash authentication MUST NOT
be allow ed.

AJ, AX, AAJ, AAX

[RSG-141] API Keys MUST be revoked if the client violates the usage agreement,
as specif ied by the IP Office.

AJ, AX, AAJ, AAX

[RSG-144] Secure and trusted certif icates MUST be issued by a mutually trusted
certif icate authority (CA) through a trust establishment process or cross-
certif ication.

AJ, AX, AAJ, AAX

[RSG-145] Certif icates shared between the client and the server SHOULD be used
to mitigate identity security risks particular to sensitive systems and
privileged actions, for example X.509.

AJ, AX, AAJ, AAX

[RSG-148] If the REST API is public, the HTTP header Access-Control-Allow-Origin
MUST be set to ‘*’.

AJ, AX, AAJ, AAX

https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/Secure_Coding_Principles
https://www.owasp.org/index.php/Secure_Coding_Principles
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

CWS/8/2

附件第 45 页

Table 3: Conformance Table Level AAJ

Rule ID Rule Cross reference and remark
[RSG-01] The forward slash character “/” MUST be used in the path of the URI to

indicate a hierarchical relationship betw een resources but the path
MUST NOT end w ith a forward slash as it does not provide any
semantic value and may cause confusion.

AAJ, AAX, AX, AJ

[RSG-02] Resources name MUST be consistent in their naming pattern. AAJ, AAX, AX, AJ
[RSG-03] Resource names SHOULD use low ercase or kebab-case naming

conventions. Resources name MAY be abbreviated.
AAJ, AAX

[RSG-05] Query parameters SHOULD use the low erCamelCase convention.
Query parameter MAY be abbreviated.

AAJ, AAX

[RSG-06] The URL pattern for a Web API MUST contain the w ord “api” in the URI. AAJ, AAX, AX, AJ
[RSG-07] Matrix parameters MUST NOT be used. AAJ, AAX, AX, AJ
[RSG-08] A Web API MUST consistently apply HTTP status codes as described in

IETF RFCs
AAJ, AAX, AX, AJ

[RSG-09] The recommended codes in Annex V SHOULD be used by a Web API
to classify the error.

AAX, AAJ

[RSG-10] If the API detects invalid input values, it MUST return the HTTP status
code “400 Bad Request”. The error payload MUST indicate the
erroneous value.

AAJ, AAX, AX, AJ

[RSG-11] If the API detects syntactically correct argument names (in the request
or query parameters) that are not expected, it SHOULD ignore them.

AAJ, AAX

[RSG-12] If the API detects valid values that require features to not be
implemented, it MUST return the HTTP status code “501 Not
Implemented”. The error payload MUST indicate the unhandled value.

AAJ, AAX, AX, AJ

[RSG-13] A Web API SHOULD only use top-level resources. If there are sub-
resources, they should be collections and imply an association. An entity
should be accessible as either top-level resource or sub-resource but
not using both w ays.

AAJ, AAX

[RSG-14] If a resource can be stand-alone it MUST be a top-level resource, or
otherw ise a sub-resource.

AAJ, AAX, AX, AJ

[RSG-15] Query parameters MUST be used instead of URL paths to retrieve
nested resources.

AAJ, AAX, AX, AJ

[RSG-16] Resource names SHOULD be nouns for CRUD Web APIs and verbs for
Intent Web APIs.

AAJ, AAX

[RSG-17] If resource name is a noun it SHOULD alw ays use the plural form.
Irregular noun forms SHOULD NOT be used. For example, /persons
should be used instead of /people.

AAJ, AAX

[RSG-18] Resource names, segment and query parameters MUST be composed
of w ords in the English language, using the primary English spellings
provided in the Oxford English Dictionary. Resource names that are
localized due to business requirements MAY be in other languages.

AAJ, AAX, AX, AJ

[RSG-19] A Web API SHOULD use for content type negotiation the request HTTP
header Accept and the response HTTP header Content-Type.

AAJ, AAX

[RSG-20] A Web API MUST support content type negotiation follow ing IETF RFC
7231.

AAJ, AAX, AX, AJ

[RSG-21] JSON format MUST be assumed w hen no specif ic content type is
requested.

AAJ, AAX, AX, AJ

[RSG-22] A Web API SHOULD return the status code “406 Not Acceptable” if
a requested format is not supported.

AAJ, AAX

[RSG-23] A Web API SHOULD reject requests containing unexpected or missing
content type headers w ith the HTTP status code “406 Not
Acceptable” or “415 Unsupported Media Type”.

AAJ, AAX

[RSJ-25] JSON object property names SHOULD be provided in low erCamelCase,
e.g., applicantName.

AAJ

[RSG-27] A Web API MUST support at least XML or JSON. AAJ, AAX, AX, AJ
[RSG-28] HTTP Methods MUST be restricted to the HTTP standard methods

POST, GET, PUT, DELETE, OPTIONS, PATCH, TRACE and HEAD, as
specif ied in IETF RFC 7231 and 5789.

AAJ, AAX, AX, AJ

[RSG-29] HTTP Methods MAY follow the pick-and-choose principle, which states
that only the functionality needed by the target usage scenario should
be implemented.

AAJ, AAX

[RSG-30] Some proxies support only POST and GET methods. To overcome these
limitations, a Web API MAY use a POST method w ith a custom HTTP
header “tunneling” the real HTTP method. The custom HTTP header X-
HTTP-Method SHOULD be used.

AAJ, AAX

CWS/8/2

附件第 46 页

[RSG-31] If a HTTP Method is not supported, the HTTP status code “405
Method Not Allowed” SHOULD be returned.

AAJ, AAX

[RSG-32] A Web API SHOULD support batching operations (aka bulk operations)
in place of multiple individual requests to achieve latency reduction. The
same semantics should be used for HTTP Methods and HTTP status
codes. The response payload SHOULD contain information about all
batching operations. If multiple errors occur, the error payload SHOULD
contain information about all the occurrences (in the details attribute). All
bulk operations SHOULD be executed in an atomic operation.

AAJ, AAX

[RSG-33] For an end point w hich fetches a single resource, if a resource is not
found, the method GET MUST return the status code “404 Not
Found”. Endpoints w hich return lists of resources will simply return an
empty list.

AAJ, AAX, AX, AJ

[RSG-34] If a resource is retrieved successfully, the GET method MUST return
200 OK.

AAJ, AAX, AX, AJ

[RSG-35] A GET request MUST be idempotent. AAJ, AAX, AX, AJ
[RSG-36] When the URI length exceeds the 255 bytes, the POST method

SHOULD be used instead of GET due to GET limitations, or else create
named queries if possible.

AAJ, AAX

[RSG-37] A HEAD request MUST be idempotent. AAJ, AAX, AX, AJ
[RSG-38] Some proxies support only POST and GET methods. A Web

API SHOULD support a custom HTTP request header to override the
HTTP Method in order to overcome these limitations.

AAJ, AAX

[RSG-39] A POST request MUST NOT be idempotent according to the IETF
RFC 2616.

AAJ, AAX, AX, AJ

[RSG-40] If the resource creation was successful, the HTTP header Location
SHOULD contain a URI (absolute or relative) pointing to a created
resource.

AAJ, AAX

[RSG-41] If the resource creation was successful, the response SHOULD contain
the status code “201 Created”.

AAJ, AAX

[RSG-42] If the resource creation was successful, the response payload SHOULD
by default contain the body of the created resource, to allow the client to
use it w ithout making an additional HTTP call.

AAJ, AAX

[RSG-43] A PUT request MUST be idempotent. AAJ, AAX, AX, AJ
[RSG-44] If a resource is not found, PUT MUST return the status code “404 Not

Found”.
AAJ, AAX, AX, AJ

[RSG-45] If a resource is updated successfully, PUT MUST return the status code
“200 OK” if the updated resource is returned or a “204 No Content” if
it is not returned.

AAJ, AAX, AX, AJ

[RSG-46] A PATCH request MUST NOT be idempotent. AAJ, AAX, AX, AJ
[RSG-47] If a Web API implements partial updates, idempotent characteristics of

PATCH SHOULD be taken into account. In order to make it idempotent
the API MAY follow the IETF RFC 5789 suggestion of using optimistic
locking.

AAJ, AAX

[RSG-48] If a resource is not found PATCH MUST return the status code “404
Not Found”.

AAJ, AAX, AX, AJ

[RSJ-49] If a Web API implements partial updates using PATCH, it MUST use the
JSON Merge Patch format to describe the partial change set, as
described in IETF RFC 7386 (by using the content type
application/merge-patch+json).

AAJ, AJ

[RSG-50] A DELETE request MUST NOT be idempotent. AAJ, AAX, AX, AJ
[RSG-51] If a resource is not found, DELETE MUST return the status code “404

Not Found”.
AAJ, AAX, AX, AJ

[RSG-52] If a resource is deleted successfully, DELETE MUST return the status
“200 OK” if the deleted resource is returned or “204 No Content” if it
is not returned.

AAJ, AAX, AX, AJ

[RSG-53] The f inal recipient is either the origin server or the f irst proxy or gateway
to receive a Max-Forw ards value of zero in the request. A TRACE
request MUST NOT include a body.

AAJ, AAX, AX, AJ

[RSG-54] A TRACE request MUST NOT be idempotent. AAJ, AAX, AX, AJ
[RSG-55] The value of the Via HTTP header f ield MUST act to track the request

chain.
AAJ, AAX, AX, AJ

[RSG-56] The Max-Forw ards HTTP header f ield MUST be used to allow the client
to limit the length of the request chain.

AAJ, AAX, AX, AJ

[RSG-57] If the request is valid, the response SHOULD contain the entire request
message in the response body, with a Content-Type of "message/http".

AAJ, AAX

[RSG-58] Responses to TRACE MUST NOT be cached. AAJ, AAX, AX, AJ

CWS/8/2

附件第 47 页

[RSG-59] The status code “200 OK” SHOULD be returned to TRACE. AAJ, AAX
[RSG-60] An OPTIONS request MUST be idempotent. AAJ, AAX, AX, AJ
[RSG-61] Custom HTTP headers starting w ith the “X-” prefix SHOULD NOT be

used.
AAJ, AAX

[RSG-62] Custom HTTP headers SHOULD NOT be used to change the behavior
of HTTP Methods unless it is to resolve any existing technical limitations
(for example, see [RSG-39]).

AAJ, AAX

[RSG-63] The naming convention for custom HTTP headers is
<organization>-<header name>, where <organization> and
<header> SHOULD follow the kebab-case convention.

AAJ, AAX

[RSG-64] A Web API SHOULD support a single method of service versioning
using URI versioning, for example /api/v1/inventors or Header
versioning, for example Accept-version: v1 or Media type
versioning, for example Accept: application/vnd.v1+json.
Query string versioning SHOULD NOT be used.

AAJ, AAX

[RSG-65] A versioning-numbering scheme SHOULD be follow ed considering only
the major version number (for example /v1).

AAJ, AAX

[RSG-66] API service contracts MAY include endpoint redirection feature. When a
service consumer attempts to invoke a service, a redirection response
may be returned to tell the service consumer to resend the request to a
new endpoint. Redirections MAY be temporary or permanent:

− Temporary redirect - using the HTTP response header
Location and the HTTP status code “302 Found” according
to IETF RFC 7231; or

− Permanent redirect - using the HTTP response header
Location and the HTTP status code “301 Moved Permanently”
according to IETF RFC 7238.

AAJ, AAX

[RSG-67] API lifecycle strategies SHOULD be published by the developers to
assist users in understanding how long a version w ill be maintained.

AAJ, AAX

[RSG-68] A Web API SHOULD support pagination. AAJ, AAX
[RSG-69] Paginated requests MAY NOT be idempotent. AAJ, AAX
[RSG-70] A Web API MUST use query parameters to implement pagination. AAJ, AAX, AX, AJ
[RSG-71] A Web API MUST NOT use HTTP headers to implement pagination. AAJ, AAX, AX, AJ
[RSG-72] Query parameters limit=<number of items to deliver> and

offset=<number of items to skip> SHOULD be used, w here
limit is the number of items to be returned (page size), and skip the
number of items to be skipped (offset). If no page size limit is specif ied,
a default SHOULD be defined - global or per collection; the default offset
MUST be zero “0”. For example, the follow ing is a valid URL:

https://w ipo.int/api/v1/patents?limit=10&offset=20

AAJ, AAX

[RSG-73] The limit and the offset parameter values SHOULD be included in the
response.

AAJ, AAX

[RSG-74] A Web API SHOULD support sorting. AAJ, AAX
[RSG-75] In order to specify a multi-attribute sorting criterion, a query parameter

MUST be used. The value of this parameter is a comma-separated list
of sort keys and sort directions either ‘asc’ for ascending or ‘desc’ for
descending MAY be appended to each sort key, separated by the colon
‘:’ character. The default direction MUST be specif ied by the server in
case that a sort direction is not specif ied for a key.

AAJ, AAX, AX, AJ

[RSG-76] A Web API SHOULD return the sorting criteria in the response. AAJ, AAX, AX, AJ
[RSG-77] A Web API MAY support expanding the body of returned content. The

query parameter expand=<comma-separated list of
attributes names> SHOULD be used.

AAJ, AAX

[RSG-78] A query parameter SHOULD be used instead of URL paths in case that
a Web API supports projection following the format:
“fields=”<comma-separated list of attribute names>.

AAJ, AAX

[RSG-79] A Web API MUST support returning the number of items in a collection. AAJ, AAX, AX, AJ
[RSG-80] A query parameter MUST be used to support returning the number of

items in a collection.
AAJ, AAX, AX, AJ

[RSG-81] The query parameter count SHOULD be used to return the number of
items in a collection.

AAJ, AAX

https://wipo.int/api/v1/patents?limit=10&offset=20

CWS/8/2

附件第 48 页

[RSG-82] A Web API MAY support returning the number of items in a collection
inline, i.e. as the part of the response that contains the collection itself. A
query parameter MUST be used.

AAJ, AAX, AX, AJ

[RSG-83] The query parameter count=true SHOULD be used. If not specif ied,
count should be set by default to false.

AAJ, AAX

[RSG-84] If a Web API supports pagination, it SHOULD support returning inline in
the response the number of the collection (i.e. the total number of items
of the collection).

AAJ, AAX

[RSG-85] When a Web API supports complex search expressions, a query
language SHOULD be specif ied, such as CQL.

AAJ, AAX

[RSG-86] A Service Contract MUST specify the grammar supported (such as
f ields, functions, keywords, and operators).

AAJ, AAX, AX, AJ

[RSG-87] The query parameter “q” MUST be used. AAJ, AAX, AX, AJ
[RSG-88] On the protocol level, a Web API MUST return an appropriate HTTP

status code selected from the list of standard HTTP Status Codes.
AAJ, AAX, AX, AJ

[RSJ-89] On the application level, a Web API MUST return a payload reporting the error
in adequate granularity. The code and message attributes are mandatory,
the details attribute is conditionally mandatory and target, status,
moreInfo, and internalMessage attributes are optional.

AAJ, AAX, AX, AJ

[RSG-90] Errors MUST NOT expose security-critical data or internal technical
details, such as call stacks in the error messages.

AAJ, AAX, AX, AJ

[RSG-91] The HTTP Header: Reason-Phrase (described in RFC 2616) MUST
NOT be used to carry error messages.

AAJ, AAX, AX, AJ

[RSG-92] Every logged error SHOULD have a unique Correlation ID. A custom
HTTP header SHOULD be used and SHOULD be named Correlation-
ID.

AAJ, AAX

[RSG-93] A Service Contract format MUST include the follow ing:

− API version;
− Information about the semantics of API elements;
− Resources;
− Resource attributes;
− Query Parameters;
− Methods;
− Media types;
− Search grammar (if one is supported);
− HTTP Status Codes;
− HTTP Methods;
− Restrictions and distinctive features; and
− Security (if any).

AAJ, AAX, AX, AJ

[RSG-94] Service Contract format SHOULD include requests and responses in
XML schema or JSON Schema and examples of the API usage in the
supported formats, i.e., XML or JSON.

AAJ, AAX

[RSG-95] A REST API MUST provide API documentation as a Service Contract. AAJ, AAX, AX, AJ
[RSG-96] A Web API implementation deviating from this Standard MUST

be explicitly documented in the Service Contract. If a deviating rule is
not specif ied in the Service Contract, it MUST be assumed that this
Standard is follow ed.

AAJ, AAX, AX, AJ

[RSG-97] A Service Contract MUST allow API client skeleton code generation. AAJ, AAX, AX, AJ
[RSG-98] A Service Contract SHOULD allow server skeleton code generation. AAJ, AAX
[RSG-99] A Web API documentation SHOULD be w ritten in RAML or OAS.

Custom documentation formats SHOULD NOT be used.
AAJ, AAX

[RSG-100] A Web API consumer SHOULD be able to specify a server timeout for
each request; a custom HTTP header SHOULD be used. A maximum
server timeout SHOULD be also used to protect server resources from
over-use.

AAJ, AAX

[RSG-101] A Web API SHOULD support conditionally retrieving data, to ensure
only data w hich is modif ied w ill be retrieved. Content-based Resource
Validation SHOULD be used because it is more accurate.

AAJ, AAX

[RSG-102] In order to implement Content-based Resource Validation the ETag
HTTP header SHOULD be used in the response to encode the data
state. Afterward, this value SHOULD be used in subsequent requests in
the conditional HTTP headers (such as If-Match or If-None-Match). If the
data has not been modif ied since the request returned the ETag, the
server SHOULD return the status code “304 Not Modified” (if not
modif ied). This mechanism is specif ied in IETF RFC 7231 and 7232.

AAJ, AAX

CWS/8/2

附件第 49 页

[RSG-103] In order to implement Time-based Resource Validation the Last-
Modified HTTP header SHOULD be used. This mechanism is
specif ied in IETF RFC 7231 and 7232.

AAJ, AAX

[RSG-104] Using response versioning, a service consumer MAY implement
Optimistic Locking.

AAJ, AAX

[RSG-105] A Web API MUST support caching of GET results; a Web API MAY
support caching of results from other HTTP Methods.

AAJ, AJ, AX

[RSG-106] The HTTP response headers Cache-Control and Expires SHOULD
be used. The latter MAY be used to support legacy clients.

AAJ, AAX

[RSG-107] A Web API SHOULD advertise if it supports partial f ile dow nloads by
responding to HEAD requests and replying with the HTTP response
headers Accept-Ranges and Content-Length.

AAJ, AAX

[RSG-108] A Web API SHOULD support partial f ile dow nloads. Multi-part ranges
SHOULD be supported.

AAJ, AAX

[RSG-109] A Web API SHOULD advertise if it supports partial f ile uploads. AAJ, AAX
[RSG-110] A Web API SHOULD support partial f ile uploaded. Multi-part ranges

SHOULD be supported.
AAJ, AAX

[RSG-111] The service provider SHOULD return w ith HTTP response headers the
HTTP header “413 Request Entity Too Large” in case the
request has exceeded the maximum allow ed limit. A custom HTTP
header MAY be used to indicate the maximum size of the request.

AAJ, AAX

[RSG-112] If a Web API supports preference handling, it SHOULD be implemented
according to IETF RFC 7240, i.e. the request HTTP header Prefer
SHOULD be used and the response HTTP header Preference-
Applied SHOULD be returned (echoing the original request).

AAJ, AAX

[RSG-113] If a Web API supports preference handling, the nomenclature of
preferences that MAY be set by using the Prefer header MUST be
recorded in the Service Contract.

AAJ, AAX, AJ, AX

[RSG-114] If a Web API supports localized data, the request HTTP header
Accept-Language MUST be supported to indicate the set of natural
languages that are preferred in the response as specif ied in IETF RFC
7231.

AAJ, AAX, AJ, AX

[RSG-115] If the API supports long-running operations, they SHOULD be
asynchronous. The following approach SHOULD be follow ed:

a. The service consumer activates the service operation;
b. The service operation returns the status code “202 Accepted”

according to IETF RFC 7231 (section 6.3.3), i.e. the request has
been accepted for processing but the processing has not been
completed. The location of the queued task that w as created is also
returned w ith the HTTP header Location; and

c. The service consumer calls the returned Location to learn if the
resource is available. If the resource is not available, the response
SHOULD have the status code “200 OK”, contain the task status (for
example pending) and MAY contain other information (for example,
a link to cancel or delete the task using the DELETE HTTP method).
If the resource is available, the response SHOULD have the status
code “303 See Other” and the HTTP header Location SHOULD
contain the URL to retrieve the task results.

AAJ, AAX

[RSG-116] Confidentiality: APIs and API Information MUST be identif ied, classif ied,
and protected against unauthorized access, disclosure and
eavesdropping at all times. The least privilege, zero trust, need to know
and need to share principles MUST be follow ed.

AAJ, AAX, AJ, AX

[RSG-117] Integrity-Assurance: APIs and API Information MUST be protected
against unauthorized modif ication, duplication, corruption and
destruction. Information MUST be modif ied through approved
transactions and interfaces. Systems MUST be updated using approved
configuration management, change management and patch
management processes.

AAJ, AAX, AJ, AX

[RSG-118] Availability: APIs and API Information MUST be available to authorized
users at the right time as defined in the Service Level Agreements
(SLAs), access-control policies and defined business processes.

AAJ, AAX, AJ, AX

[RSG-119] Non-repudiation: Every transaction processed or action performed by
APIs MUST enforce non-repudiation through the implementation of
proper auditing, authorization, authentication, and the implementation of
secure paths and non-repudiation services and mechanisms.

AAJ, AAX, AJ, AX

CWS/8/2

附件第 50 页

[RSG-120] Authentication, Authorization, Auditing: Users, systems, APIs or devices
involved in critical transactions or actions MUST be authenticated,
authorized using role-based or attribute based access-control services
and maintain segregation of duty. In addition, all actions MUST be
logged and the authentication’s strength must increase w ith the
associated information risk.

AAJ, AAX, AJ, AX

[RSG-121] While developing APIs, threats, malicious use cases, secure coding
techniques, transport layer security and security testing MUST be
carefully considered, especially:

− PUTs and POSTs – i.e.: w hich change to internal data
could potentially be used to attack or misinform;

− DELETES – i.e.: could be used to remove the contents of
an internal resource repository;

− Whitelist allow able methods- to ensure that allow able
HTTP Methods are properly restricted while others would
return a proper response code; and

− Well know n attacks should be considered during the
threat-modeling phase of the design process to ensure
that the threat risk does not increase. The threats and
mitigation defined w ithin OWASP Top Ten Cheat
Sheet MUST be taken into consideration.

AAJ, AAX, AJ, AX

[RSG-122] While developing APIs, the standards and best practices listed below
SHOULD be follow ed:

− Secure coding best practices: OWASP Secure Coding
Principles;

− Rest API security: REST Security Cheat Sheet;
− Escape inputs and cross site scripting protection: OWASP

XSS Cheat Sheet;
− SQL Injection prevention: OWASP SQL Injection Cheat

Sheet, OWASP Parameterization Cheat Sheet; and
− Transport layer security: OWASP Transport Layer

Protection Cheat Sheet.

AAJ, AAX, AJ, AX

[RSG-123] Security testing and vulnerability assessment MUST be carried out to
ensure that APIs are secure and threat-resistant. This requirement MAY
be achieved by leveraging Static and Dynamic Application Security
Testing (SAST/DAST), automated vulnerability management tools and
penetration testing.

AAJ, AAX, AJ, AX

[RSG-124] Protected services MUST only provide HTTPS endpoints using TLS 1.2,
or higher, w ith a cipher suite that includes ECDHE for key exchange.

AAJ, AAX, AJ, AX

[RSG-125] When considering authentication protocols, perfect forward secrecy
SHOULD be used to provide transport security. The use of insecure
cryptographic algorithms and backwards compatibility to SSL 3 and TLS
1.0/1.1 SHOULD NOT be allow ed.

AAX, AAJ

[RSG-126] For maximum security and trust, a site-to-site IPSEC VPN SHOULD be
established to further protect the information transmitted over insecure
netw orks.

AAX, AAJ

[RSG-127] The consuming application SHOULD validate the TLS certif icate chain
w hen making requests to protected resources, including checking the
certif icate revocation list.

AAX, AAJ

[RSG-128] Protected services SHOULD only use valid certif icates issued by a
trusted certif icate authority (CA).

AAX, AAJ

[RSG-129] Tokens SHOULD be signed using secure signing algorithms that are
compliant w ith the digital signature standard (DSS) FIPS –186-4. The
RSA digital signature algorithm or the ECDSA algorithm SHOULD be
considered.

AAX, AAJ

[RSG-130] Anonymous authentication MUST only be used w hen the customers and
the application they are using accesses information or feature with a low
sensitivity level w hich should not require authentication, such as, public
information.

AAJ, AAX, AJ, AX

[RSG-131] Username and password or password hash authentication MUST NOT
be allow ed.

AAJ, AAX, AJ, AX

[RSG-132] If a service is protected, Open ID Connect SHOULD be used. AAX, AAJ

https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/Secure_Coding_Principles
https://www.owasp.org/index.php/Secure_Coding_Principles
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

CWS/8/2

附件第 51 页

[RSG-133] Where a JSON Web Token (JWT) is used, a JWT secret SHOULD
possess high entropy to increase the w ork factor of a brute force attack;
token TTL and RTTL SHOULD be as short as possible; and sensitive
information SHOULD NOT be stored in the JWT payload.

AAX, AAJ

[RSG-134] In POST/PUT requests, sensitive data SHOULD be transferred in the
request body or by request headers.

AAX, AAJ

[RSG-135] In GET requests, sensitive data SHOULD be transferred in an HTTP
Header.

AAX, AAJ

[RSG-136] In order to minimize latency and reduce coupling betw een
protected services, the access control decision SHOULD be taken
locally by REST endpoints.

AAX, AAJ

[RSG-137] API Keys SHOULD be used for protected and public services to prevent
overwhelming their service provider with multiple requests (denial-of-
service attacks). For protected services API Keys MAY be used for
monetization (purchased plans), usage policy enforcement (QoS) and
monitoring.

AAX, AAJ

[RSG-138] API Keys MAY be combined w ith the HTTP request header user-agent
to discern between a human user and a software agent as specified in
IETF RFC 7231.

AAX, AAJ

[RSG-139] The service provider SHOULD return along w ith HTTP response
headers the current usage status. The follow ing response data MAY be
returned:

− rate limit - rate limit (per minute) as set in the system;
− rate limit remaining - remaining amount of requests

allow ed during the current time slot (-1 indicates that the
limit has been exceeded); and

− rate limit reset - time (in seconds) remaining until the
request counter will be reset.

AAX, AAJ

[RSG-140] The service provider SHOULD return the status code “429 Too Many
Requests” if requests are coming in too quickly.

AAX, AAJ

[RSG-141] API Keys MUST be revoked if the client violates the usage agreement,
as specif ied by the IP Office..

AAJ, AAX, AJ, AX

[RSG-142] API Keys SHOULD be transferred using custom HTTP headers. They
SHOULD NOT be transferred using query parameters.

AAX, AAJ

[RSG-143] API Keys SHOULD be randomly generated. AAX, AAJ
[RSG-144] Secure and trusted certif icates MUST be issued by a mutually trusted

certif icate authority (CA) through a trust establishment process or cross-
certif ication.

AAJ, AAX, AJ, AX

[RSG-145] Certif icates shared between the client and the server SHOULD be used
to mitigate identity security risks particular to sensitive systems and
privileged actions, for example X.509.

AAJ, AAX, AJ, AX

[RSG-146] For highly privileged services, two-way mutual authentication betw een
the client and the server SHOULD use certif icates to provide additional
protection.

AAX, AAJ

[RSG-147] Multi-factor authentication SHOULD be implemented to mitigate identity
risks for application w ith a high-risk profile, a system processing very
sensitive information or a privileged action.

AAX, AAJ

[RSG-148] If the REST API is public, the HTTP header Access-Control-Allow-Origin
MUST be set to ‘*’.

AAJ, AAX, AJ, AX

[RSG-149] If the REST API is protected, CORS SHOULD be used, if possible. Else,
JSONP MAY be used as fallback but only for GET requests, for
example, w hen the user is accessing using an old brow ser. Iframe
SHOULD NOT be used.

AAX, AAJ

[RSJ-150] If using instances described a schema, the Link header SHOULD be
used to provide a link to a dow nloadable JSON schema ACCORDING
TO RFC8288.

AAJ

[RSJ-151] A Web API SHOULD implement at least Level 2 (Transport Native
Properties) of RMM. Level 3 (Hypermedia) MAY be implemented to
make the API completely discoverable.

AAJ

[RSJ-152] For designing a custom hypermedia format the follow ing set of attributes
SHOULD be used enclosed into an attribute link:

− href – the target URI;
− rel – the meaning of the target URI;
− self – the URI references the resource itself;

AAJ

CWS/8/2

附件第 52 页

− next – the URI references the previous page (if used
during pagination);

− previous – the URI references the next page (if used
during pagination); and

− arbitrary name v denotes the custom meaning of a
relation.

CWS/8/2

附件第 53 页

Table 4: Conformance Level AAX

Rule ID Rule Cross reference
and remark

[RSG-01] The forward slash character “/” MUST be used in the path of the URI to indicate a
hierarchical relationship betw een resources but the path MUST NOT end w ith a
forward slash as it does not provide any semantic value and may cause confusion.

AAJ, AAX

[RSG-02] Resources name MUST be consistent in their naming pattern. AAJ, AAX, AJ, AX
[RSG-03] Resource names SHOULD use low ercase or kebab-case naming conventions.

Resources name MAY be abbreviated.
AAJ, AAX

[RSG-05] Query parameters SHOULD use the low erCamelCase convention. Query
parameter MAY be abbreviated.

AAJ, AAX

[RSG-06] The URL pattern for a Web API MUST contain the w ord “api” in the URI. AAJ, AAX, AX, AJ
[RSG-07] Matrix parameters MUST NOT be used. AAJ, AAX, AX, AJ
[RSG-08] A Web API MUST consistently apply HTTP status codes as described in IETF

RFCs
AAJ, AAX, AX, AJ

[RSG-09] The recommended codes in Annex V SHOULD be used by a Web API to classify
the error.

AAX, AAJ

[RSG-10] If the API detects invalid input values, it MUST return the HTTP status code “400
Bad Request”. The error payload MUST indicate the erroneous value.

AAJ, AAX, AX, AJ

[RSG-11] If the API detects syntactically correct argument names (in the request or query
parameters) that are not expected, it SHOULD ignore them.

AAJ, AAX

[RSG-12] If the API detects valid values that require features to not be implemented, it
MUST return the HTTP status code “501 Not Implemented”. The error payload
MUST indicate the unhandled value.

AAJ, AAX, AX, AJ

[RSG-13] A Web API SHOULD only use top-level resources. If there are sub-resources, they
should be collections and imply an association. An entity should be accessible as
either top-level resource or sub-resource but not using both w ays.

AAJ, AAX

[RSG-14] If a resource can be stand-alone it MUST be a top-level resource, or otherwise a
sub-resource.

AAJ, AAX, AX, AJ

[RSG-15] Query parameters MUST be used instead of URL paths to retrieve nested
resources.

AAJ, AAX, AX, AJ

[RSG-16] Resource names SHOULD be nouns for CRUD Web APIs and verbs for Intent
Web APIs.

AAJ, AAX

[RSG-17] If resource name is a noun it SHOULD alw ays use the plural form. Irregular noun
forms SHOULD NOT be used. For example, /persons should be used instead of
/people.

AAJ, AAX

[RSG-18] Resource names, segment and query parameters MUST be composed of w ords in
the English language, using the primary English spellings provided in the Oxford
English Dictionary. Resource names that are localized due to business
requirements MAY be in other languages.

AAJ, AAX, AX, AJ

[RSG-19] A Web API SHOULD use for content type negotiation the request HTTP header
Accept and the response HTTP header Content-Type.

AAJ, AAX

[RSG-20] A Web API MUST support content type negotiation follow ing IETF RFC 7231. AAJ, AAX, AX, AJ
[RSG-21] JSON format MUST be assumed w hen no specif ic content type is requested. AAJ, AAX, AX, AJ
[RSG-22] A Web API SHOULD return the status code “406 Not Acceptable” if a

requested format is not supported.
AAJ, AAX

[RSG-23] A Web API SHOULD reject requests containing unexpected or missing content
type headers w ith the HTTP status code “406 Not Acceptable” or “415
Unsupported Media Type”.

AAJ, AAX

[RSX-24] The requests and responses (naming convention, message format, data structure,
and data dictionary) SHOULD refer to WIPO Standard ST.96.

AAX

[RSX-26] XML components SHOULD be provided in UpperCamelCase in line w ith WIPO
Standard ST.96.

AAX

[RSG-27] A Web API MUST support at least XML or JSON. AAJ, AAX, AX, AJ
[RSG-28] HTTP Methods MUST be restricted to the HTTP standard methods POST, GET,

PUT, DELETE, OPTIONS, PATCH, TRACE and HEAD, as specified in IETF RFC 7231
and 5789.

AAJ, AAX, AX, AJ

[RSG-29] HTTP Methods MAY follow the pick-and-choose principle, which states that only
the functionality needed by the target usage scenario should be implemented.

AAJ, AAX

[RSG-30] Some proxies support only POST and GET methods. To overcome these
limitations, a Web API MAY use a POST method w ith a custom HTTP header
“tunneling” the real HTTP method. The custom HTTP header X-HTTP-Method
SHOULD be used.

AAJ, AAX

CWS/8/2

附件第 54 页

[RSG-31] If a HTTP Method is not supported, the HTTP status code “405 Method Not
Allowed” SHOULD be returned.

AAJ, AAX

[RSG-32] A Web API SHOULD support batching operations (aka bulk operations) in place of
multiple individual requests to achieve latency reduction. The same semantics
should be used for HTTP Methods and HTTP status codes. The response payload
SHOULD contain information about all batching operations. If multiple errors
occur, the error payload SHOULD contain information about all the occurrences (in
the details attribute). All bulk operations SHOULD be executed in an atomic
operation.

AAJ, AAX

[RSG-33] For an end point w hich fetches a single resource, if a resource is not found, the
method GET MUST return the status code “404 Not Found”. Endpoints w hich
return lists of resources will simply return an empty list.

AAJ, AAX, AX, AJ

[RSG-34] If a resource is retrieved successfully, the GET method MUST return 200 OK. AAJ, AAX, AX, AJ
[RSG-35] A GET request MUST be idempotent. AAJ, AAX, AX, AJ
[RSG-36] When the URI length exceeds the 255 bytes, the POST method SHOULD be used

instead of GET due to GET limitations, or else create named queries if possible.
AAJ, AAX

[RSG-37] A HEAD request MUST be idempotent. AAJ, AAX, AX, AJ
[RSG-38] Some proxies support only POST and GET methods. A Web API SHOULD support

a custom HTTP request header to override the HTTP Method in order to overcome
these limitations.

AAJ, AAX

[RSG-39] A POST request MUST NOT be idempotent according to the IETF RFC 2616. AAJ, AAX, AX, AJ
[RSG-40] If the resource creation was successful, the HTTP header Location SHOULD

contain a URI (absolute or relative) pointing to a created resource.
AAJ, AAX

[RSG-41] If the resource creation was successful, the response SHOULD contain the status
code “201 Created”.

AAJ, AAX

[RSG-42] If the resource creation was successful, the response payload SHOULD by default
contain the body of the created resource, to allow the client to use it w ithout
making an additional HTTP call.

AAJ, AAX

[RSG-43] A PUT request MUST be idempotent. AAJ, AAX, AX, AJ
[RSG-44] If a resource is not found, PUT MUST return the status code “404 Not Found”. AAJ, AAX, AX, AJ
[RSG-45] If a resource is updated successfully, PUT MUST return the status code “200 OK”

if the updated resource is returned or a “204 No Content” if it is not returned.
AAJ, AAX, AX, AJ

[RSG-46] A PATCH request MUST NOT be idempotent. AAJ, AAX, AX, AJ
[RSG-47] If a Web API implements partial updates, idempotent characteristics of PATCH

SHOULD be taken into account. In order to make it idempotent the API MAY follow
the IETF RFC 5789 suggestion of using optimistic locking.

AAJ, AAX

[RSG-48] If a resource is not found, PATCH MUST return the status code “404 Not
Found”.

AAJ, AAX, AX, AJ

[RSG-50] A DELETE request MUST NOT be idempotent. AAJ, AAX, AX, AJ
[RSG-51] If a resource is not found, DELETE MUST return the status code “404 Not

Found”.
AAJ, AAX, AX, AJ

[RSG-52] If a resource is deleted successfully, DELETE MUST return the status “200 OK” if
the deleted resource is returned or “204 No Content” if it is not returned.

AAJ, AAX, AX, AJ

[RSG-53] The f inal recipient is either the origin server or the f irst proxy or gateway to receive
a Max-Forw ards value of zero in the request. A TRACE request MUST NOT include
a body.

AAJ, AAX, AX, AJ

[RSG-54] A TRACE request MUST NOT be idempotent. AAJ, AAX, AX, AJ
[RSG-55] The value of the Via HTTP header f ield MUST act to track the request chain. AAJ, AAX, AX, AJ
[RSG-56] The Max-Forw ards HTTP header f ield MUST be used to allow the client to limit the

length of the request chain.
AAJ, AAX, AX, AJ

[RSG-57] If the request is valid, the response SHOULD contain the entire request message
in the response body, with a Content-Type of "message/http".

AAJ, AAX

[RSG-58] Responses to TRACE MUST NOT be cached. AAJ, AAX, AX, AJ
[RSG-59] The status code “200 OK” SHOULD be returned to TRACE. AAJ, AAX
[RSG-60] An OPTIONS request MUST be idempotent. AAJ, AAX, AX, AJ
[RSG-61] Custom HTTP headers starting w ith the “X-” prefix SHOULD NOT be used. AAJ, AAX
[RSG-62] Custom HTTP headers SHOULD NOT be used to change the behavior of HTTP

Methods unless it is to resolve any existing technical limitations (for example, see
[RSG-39]).

AAJ, AAX

[RSG-63] The naming convention for custom HTTP headers is <organization>-<header
name>, where <organization> and <header> SHOULD follow the kebab-case
convention.

AAJ, AAX

[RSG-64] A Web API SHOULD support a single method of service versioning using URI
versioning, for example /api/v1/inventors or Header versioning, for example
Accept-version: v1 or Media type versioning, for example Accept:
application/vnd.v1+json. Query string versioning SHOULD NOT be used.

AAJ, AAX

CWS/8/2

附件第 55 页

[RSG-65] A versioning-numbering scheme SHOULD be follow ed considering only the major
version number (for example /v1).

AAJ, AAX

[RSG-66] API service contracts MAY include endpoint redirection feature. When a service
consumer attempts to invoke a service, a redirection response may be returned to
tell the service consumer to resend the request to a new endpoint. Redirections
MAY be temporary or permanent:

− Temporary redirect - using the HTTP response header Location and the
HTTP status code “302 Found” according to IETF RFC 7231; or

− Permanent redirect - using the HTTP response header Location and the
HTTP status code “301 Moved Permanently” according to IETF RFC
7238.

AAJ, AAX

[RSG-67] API lifecycle strategies SHOULD be published by the developers to assist users in
understanding how long a version w ill be maintained

AAJ, AAX

[RSG-68] A Web API SHOULD support pagination. AAJ, AAX
[RSG-69] Paginated requests MAY NOT be idempotent. AAJ, AAX
[RSG-70] A Web API MUST use query parameters to implement pagination. AAJ, AAX, AX, AJ
[RSG-71] A Web API MUST NOT use HTTP headers to implement pagination. AAJ, AAX, AX, AJ
[RSG-72] Query parameters limit=<number of items to deliver> and

offset=<number of items to skip> SHOULD be used, w here limit is the
number of items to be returned (page size), and skip the number of items to be
skipped (offset). If no page size limit is specif ied, a default SHOULD be defined -
global or per collection; the default offset MUST be zero “0”. For example, the
follow ing is a valid URL:

https://w ipo.int/api/v1/patents?limit=10&offset=20

AAJ, AAX

[RSG-73] The limit and the offset parameter values SHOULD be included in the response. AAJ, AAX
[RSG-74] A Web API SHOULD support sorting. AAJ, AAX
[RSG-75] In order to specify a multi-attribute sorting criterion, a query parameter MUST be

used. The value of this parameter is a comma-separated list of sort keys and sort
directions either ‘asc’ for ascending or ‘desc’ for descending MAY be appended to
each sort key, separated by the colon ‘:’ character. The default direction MUST be
specif ied by the server in case that a sort direction is not specif ied for a key.

AAJ, AAX, AX, AJ

[RSG-76] A Web API SHOULD return the sorting criteria in the response. AAJ, AAX, AX, AJ
[RSG-77] A Web API MAY support expanding the body of returned content. The query

parameter expand=<comma-separated list of attributes names>
SHOULD be used.

AAJ, AAX

[RSG-78] A query parameter SHOULD be used instead of URL paths in case that a Web API
supports projection following the format: “fields=”<comma-separated list
of attribute names>.

AAJ, AAX

[RSG-79] A Web API MUST support returning the number of items in a collection. AAJ, AAX, AX, AJ
[RSG-80] A query parameter MUST be used to support returning the number of items in a

collection.
AAJ, AAX, AX, AJ

[RSG-81] The query parameter count SHOULD be used to return the number of items in a
collection.

AAJ, AAX

[RSG-82] A Web API MAY support returning the number of items in a collection inline, i.e. as
the part of the response that contains the collection itself. A query parameter
MUST be used.

AAJ, AAX, AX, AJ

[RSG-83] The query parameter count=true SHOULD be used. If not specif ied, count
should be set by default to false.

AAJ, AAX

[RSG-84] If a Web API supports pagination, it SHOULD support returning inline in the
response the number of the collection (i.e. the total number of items of the
collection).

AAJ, AAX

[RSG-85] When a Web API supports complex search expressions, a query language
SHOULD be specif ied, such as CQL.

AAJ, AAX

[RSG-86] A Service Contract MUST specify the grammar supported (such as f ields,
functions, keywords, and operators).

AAJ, AAX, AX, AJ

[RSG-87] The query parameter “q” MUST be used. AAJ, AAX, AX, AJ
[RSG-88] On the protocol level, a Web API MUST return an appropriate HTTP status code

selected from the list of standard HTTP Status Codes.
AAJ, AAX, AX, AJ

[RSJ-89] On the application level, a Web API MUST return a payload reporting the error in
adequate granularity. The code and message attributes are mandatory, the
details attribute is conditionally mandatory and target, status, moreInfo,
and internalMessage attributes are optional.

AAJ, AAX, AX, AJ

https://wipo.int/api/v1/patents?limit=10&offset=20

CWS/8/2

附件第 56 页

[RSG-90] Errors MUST NOT expose security-critical data or internal technical details, such
as call stacks in the error messages.

AAJ, AAX, AX, AJ

[RSG-91] The HTTP Header: Reason-Phrase (described in RFC 2616) MUST NOT be
used to carry error messages.

AAJ, AAX, AX, AJ

[RSG-92] Every logged error SHOULD have a unique Correlation ID. A custom HTTP
header SHOULD be used and SHOULD be named Correlation-ID.

AAJ, AAX

[RSG-93] A Service Contract format MUST include the follow ing:

− API version;
− Information about the semantics of API elements;
− Resources;
− Resource attributes;
− Query Parameters;
− Methods;
− Media types;
− Search grammar (if one is supported);
− HTTP Status Codes;
− HTTP Methods;
− Restrictions and distinctive features; and
− Security (if any).

AAJ, AAX, AX, AJ

[RSG-94] Service Contract format SHOULD include requests and responses in XML schema
or JSON Schema and examples of the API usage in the supported formats, i.e.,
XML or JSON.

AAJ, AAX

[RSG-95] A REST API MUST provide API documentation as a Service Contract. AAJ, AAX, AX, AJ
[RSG-96] A Web API implementation deviating from this Standard MUST be explicitly

documented in the Service Contract. If a deviating rule is not specif ied in the
Service Contract, it MUST be assumed that this Standard is follow ed.

AAJ, AAX, AX, AJ

[RSG-97] A Service Contract MUST allow API client skeleton code generation. AAJ, AAX, AX, AJ
[RSG-98] A Service Contract SHOULD allow server skeleton code generation. AAJ, AAX
[RSG-99] A Web API documentation SHOULD be w ritten in RAML or OAS. Custom

documentation formats SHOULD NOT be used.
AAJ, AAX

[RSG-100] A Web API consumer SHOULD be able to specify a server timeout for each
request; a custom HTTP header SHOULD be used. A maximum server timeout
SHOULD be also used to protect server resources from over-use.

AAJ, AAX

[RSG-101] A Web API SHOULD support conditionally retrieving data, to ensure only data
w hich is modif ied w ill be retrieved. Content-based Resource Validation SHOULD
be used because it is more accurate.

AAJ, AAX

[RSG-102] In order to implement Content-based Resource Validation the ETag HTTP header
SHOULD be used in the response to encode the data state. Afterward, this value
SHOULD be used in subsequent requests in the conditional HTTP headers (such
as If-Match or If-None-Match). If the data has not been modif ied since the request
returned the ETag, the server SHOULD return the status code “304 Not
Modified” (if not modif ied). This mechanism is specif ied in IETF RFC 7231 and
7232.

AAJ, AAX

[RSG-103] In order to implement Time-based Resource Validation the Last-Modified
HTTP header SHOULD be used. This mechanism is specif ied in IETF RFC 7231
and 7232.

AAJ, AAX

[RSG-104] Using response versioning, a service consumer MAY implement Optimistic
Locking.

AAJ, AAX

[RSG-106] The HTTP response headers Cache-Control and Expires SHOULD be used.
The latter MAY be used to support legacy clients.

AAJ, AAX

[RSG-107] A Web API SHOULD advertise if it supports partial f ile dow nloads by responding to
HEAD requests and replying w ith the HTTP response headers Accept-Ranges
and Content-Length.

AAJ, AAX

[RSG-108] A Web API SHOULD support partial f ile dow nloads. Multi-part ranges SHOULD be
supported.

AAJ, AAX

[RSG-109] A Web API SHOULD advertise if it supports partial f ile uploads. AAJ, AAX
[RSG-110] A Web API SHOULD support partial f ile uploaded. Multi-part ranges SHOULD be

supported.
AAJ, AAX

[RSG-111] The service provider SHOULD return w ith HTTP response headers the HTTP
header “413 Request Entity Too Large” in case the request has exceeded
the maximum allow ed limit. A custom HTTP header MAY be used to indicate the
maximum size of the request.

AAJ, AAX

CWS/8/2

附件第 57 页

[RSG-112] If a Web API supports preference handling, it SHOULD be implemented according
to IETF RFC 7240, i.e. the request HTTP header Prefer SHOULD be used and
the response HTTP header Preference-Applied SHOULD be returned
(echoing the original request).

AAJ, AAX

[RSG-113] If a Web API supports preference handling, the nomenclature of preferences that
MAY be set by using the Prefer header MUST be recorded in the Service
Contract.

AAJ, AAX, AJ, AX

[RSG-114] If a Web API supports localized data, the request HTTP header Accept-
Language MUST be supported to indicate the set of natural languages that are
preferred in the response as specif ied in IETF RFC 7231.

AAJ, AAX, AJ, AX

[RSG-115] If the API supports long-running operations, they SHOULD be asynchronous. The
follow ing approach SHOULD be follow ed:

a. The service consumer activates the service operation;
b. The service operation returns the status code “202 Accepted” according to

IETF RFC 7231 (section 6.3.3), i.e. the request has been accepted for
processing but the processing has not been completed. The location of the
queued task that w as created is also returned w ith the HTTP header
Location; and

c. The service consumer calls the returned Location to learn if the resource is
available. If the resource is not available, the response SHOULD have the
status code “200 OK”, contain the task status (for example pending) and MAY
contain other information (for example, a link to cancel or delete the task using
the DELETE HTTP method). If the resource is available, the response SHOULD
have the status code “303 See Other” and the HTTP header Location
SHOULD contain the URL to retrieve the task results.

AAJ, AAX

[RSG-116] Confidentiality: APIs and API Information MUST be identif ied, classif ied, and
protected against unauthorized access, disclosure and eavesdropping at all times.
The least privilege, zero trust, need to know and need to share principles MUST
be follow ed.

AAJ, AAX, AJ, AX

[RSG-117] Integrity-Assurance: APIs and API Information MUST be protected against
unauthorized modif ication, duplication, corruption and destruction. Information
MUST be modif ied through approved transactions and interfaces. Systems MUST
be updated using approved configuration management, change management and
patch management processes.

AAJ, AAX, AJ, AX

[RSG-118] Availability: APIs and API Information MUST be available to authorized users at
the right time as defined in the Service Level Agreements (SLAs), access-control
policies and defined business processes.

AAJ, AAX, AJ, AX

[RSG-119] Non-repudiation: Every transaction processed or action performed by APIs MUST
enforce non-repudiation through the implementation of proper auditing,
authorization, authentication, and the implementation of secure paths and non-
repudiation services and mechanisms.

AAJ, AAX, AJ, AX

[RSG-120] Authentication, Authorization, Auditing: Users, systems, APIs or devices involved
in critical transactions or actions MUST be authenticated, authorized using role-
based or attribute based access-control services and maintain segregation of duty.
In addition, all actions MUST be logged and the authentication’s strength must
increase w ith the associated information risk.

AAJ, AAX, AJ, AX

[RSG-121] While developing APIs, threats, malicious use cases, secure coding techniques,
transport layer security and security testing MUST be carefully considered,
especially:

− PUTs and POSTs – i.e.: w hich change to internal data could
potentially be used to attack or misinform;

− DELETES – i.e.: could be used to remove the contents of an internal
resource repository;

− Whitelist allow able methods- to ensure that allow able HTTP
Methods are properly restricted while others would return a proper
response code; and

− Well know n attacks should be considered during the threat-
modeling phase of the design process to ensure that the threat risk
does not increase. The threats and mitigation defined w ithin
OWASP Top Ten Cheat Sheet MUST be taken into consideration.

AAJ, AAX, AJ, AX

[RSG-122] While developing APIs, the standards and best practices listed below SHOULD be
follow ed:

− Secure coding best practices: OWASP Secure Coding Principles;

AAJ, AAX, AJ, AX

https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/Secure_Coding_Principles

CWS/8/2

附件第 58 页

− Rest API security: REST Security Cheat Sheet;
− Escape inputs and cross site scripting protection: OWASP XSS

Cheat Sheet;
− SQL Injection prevention: OWASP SQL Injection Cheat Sheet,

OWASP Parameterization Cheat Sheet; and
− Transport layer security: OWASP Transport Layer Protection Cheat

Sheet.

[RSG-123] Security testing and vulnerability assessment MUST be carried out to ensure that
APIs are secure and threat-resistant. This requirement MAY be achieved by
leveraging Static and Dynamic Application Security Testing (SAST/DAST),
automated vulnerability management tools and penetration testing.

AAJ, AAX, AJ, AX

[RSG-124] Protected services MUST only provide HTTPS endpoints using TLS 1.2, or higher,
w ith a cipher suite that includes ECDHE for key exchange.

AAJ, AAX, AJ, AX

[RSG-125] When considering authentication protocols, perfect forward secrecy SHOULD be
used to provide transport security. The use of insecure cryptographic algorithms
and backw ards compatibility to SSL 3 and TLS 1.0/1.1 SHOULD NOT be allow ed.

AAX, AAJ

[RSG-126] For maximum security and trust, a site-to-site IPSEC VPN SHOULD be
established to further protect the information transmitted over insecure networks.

AAX, AAJ

[RSG-127] The consuming application SHOULD validate the TLS certif icate chain w hen
making requests to protected resources, including checking the certif icate
revocation list.

AAX, AAJ

[RSG-128] Protected services SHOULD only use valid certif icates issued by a trusted
certif icate authority (CA).

AAX, AAJ

[RSG-129] Tokens SHOULD be signed using secure signing algorithms that are compliant
w ith the digital signature standard (DSS) FIPS –186-4. The RSA digital signature
algorithm or the ECDSA algorithm SHOULD be considered.

AAX, AAJ

[RSG-130] Anonymous authentication MUST only be used w hen the customers and the
application they are using accesses information or feature with a low sensitivity
level w hich should not require authentication, such as, public information.

AAJ, AAX, AJ, AX

[RSG-131] Username and password or password hash authentication MUST NOT be allow ed. AAJ, AAX, AJ, AX
[RSG-132] If a service is protected, Open ID Connect SHOULD be used. AAX, AAJ
[RSG-133] Where a JSON Web Token (JWT) is used, a JWT secret SHOULD possess high

entropy to increase the w ork factor of a brute force attack; token TTL and RTTL
SHOULD be as short as possible; and sensitive information SHOULD NOT be
stored in the JWT payload.

AAX, AAJ

[RSG-134] In POST/PUT requests, sensitive data SHOULD be transferred in the request body
or by request headers.

AAX, AAJ

[RSG-135] In GET requests, sensitive data SHOULD be transferred in an HTTP Header. AAX, AAJ
[RSG-136] In order to minimize latency and reduce coupling betw een protected services, the

access control decision SHOULD be taken locally by REST endpoints.
AAX, AAJ

[RSG-137] API Keys SHOULD be used for protected and public services to prevent
overwhelming their service provider with multiple requests (denial-of-service
attacks). For protected services API Keys MAY be used for monetization
(purchased plans), usage policy enforcement (QoS) and monitoring.

AAX, AAJ

[RSG-138] API Keys MAY be combined w ith the HTTP request header user-agent to discern
betw een a human user and a software agent as specified in IETF RFC 7231.

AAX, AAJ

[RSG-139] The service provider SHOULD return along w ith HTTP response headers the
current usage status. The follow ing response data MAY be returned:

− rate limit - rate limit (per minute) as set in the system;
− rate limit remaining - remaining amount of requests allow ed during

the current time slot (-1 indicates that the limit has been exceeded);
and

− rate limit reset - time (in seconds) remaining until the request
counter w ill be reset.

AAX, AAJ

[RSG-140] The service provider SHOULD return the status code “429 Too Many
Requests” if requests are coming in too quickly.

AAX, AAJ

[RSG-141] API Keys MUST be revoked if the client violates the usage agreement, as
specif ied by the IP Office..

AAJ, AAX, AJ, AX

[RSG-142] API Keys SHOULD be transferred using custom HTTP headers. They SHOULD
NOT be transferred using query parameters.

AAX, AAJ

[RSG-143] API Keys SHOULD be randomly generated. AAX, AAJ
[RSG-144] Secure and trusted certif icates MUST be issued by a mutually trusted certif icate

authority (CA) through a trust establishment process or cross-certification.
AAJ, AAX, AJ, AX

https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

CWS/8/2

附件第 59 页

[RSG-145] Certif icates shared between the client and the server SHOULD be used to mitigate
identity security risks particular to sensitive systems and privileged actions, for
example X.509.

AAJ, AAX, AJ, AX

[RSG-146] For highly privileged services, two-way mutual authentication betw een the client
and the server SHOULD use certif icates to provide additional protection.

AAX, AAJ

[RSG-147] Multi-factor authentication SHOULD be implemented to mitigate identity risks for
application w ith a high-risk profile, a system processing very sensitive information
or a privileged action.

AAX, AAJ

[RSG-148] If the REST API is public, the HTTP header Access-Control-Allow-Origin MUST be
set to ‘*’.

AAJ, AAX, AJ, AX

[RSG-149] If the REST API is protected, CORS SHOULD be used, if possible. Else, JSONP
MAY be used as fallback but only for GET requests, for example, w hen the user is
accessing using an old brow ser. Iframe SHOULD NOT be used.

AAX, AAJ

[Annex II of ST.XX follow s]

CWS/8/2

附件第 60 页

ANNEX II

REST IP Vocabulary

Final Draft

Proposal by the API Task Force for consideration at the CWS/8

1. The follow ing IP Vocabulary is provided in Table 5 as examples of /basic RESTful Service Request parameters. IP
Offices will likely encounter the need to develop more complex requests and varied response payloads according to their
business needs. The parameters in this table are examples of ST.96 elements in low erCamelCase, used for a JSON
response. The complete ST.96 IP data dictionary and IP XML Schemas can be accessed from this location:
https://www.wipo.int/standards/en/st96/v4-0/.

[Editorial Note: The API Task Force will be providing in a future revision a link to a more comprehensive list of REST IP
ST.96 and JSON vocabulary which will be dynamically maintained on an ongoing basis as IP elements and vocabulary
continue to evolve.]

Table 5: Example API Business Vocabulary in lowerCamelCase following ST.96 XSDs

Business
Domain(s)

Resource
Name(s) Parameter Name Description

ALL /trademarks
/patents
/designs

st13ApplicationNumber

The application number for the f iled IP, using WIPO ST.13
format w hich is a string of several values including the national
application number, IP Type, and the country/organization.

ALL /trademarks
/patents
/designs

applicationNumber

The application number for the f iled IP in the format of the
national off ice.

MULTIPLE /trademarks
/designs

internationalRegistrationNumber

The International Registration Number of the IP right.
For Trademarks this pertains to the Madrid System
For Industrial Designs, this pertains to the Hague system.

ALL /trademarks
/patents
/designs

availableDocument
Single document entry relevant to the search criteria provided
to DocList API

ALL /trademarks
/patents
/designs

sortingCriteria
Sorting Criterion used by the DocList API

ALL /trademarks
/patents
/designs

receivingOfficeCode
The IP Office, in WIPO ST.2 format.

ALL /trademarks
/patents
/designs

receivingOfficeDate
The date received at the IP Office

Trademarks /trademarks registrationDate The date registered at the IP Office

applicationDate The date of the application

markCurrentStatusCode Code of the current legal status of the application

markCurrentStatusDate Date of the current legal status of the application

Patents /patents f ilingDate The date that the application w as f iled

grantPublicationDate The date that the grant w as published

f ileReferenceIdentif ier Applicants reference number

https://www.wipo.int/standards/en/st96/v4-0/
https://www.wipo.int/export/sites/www/standards/en/pdf/03-13-01.pdf
https://www.wipo.int/export/sites/www/standards/en/pdf/03-02-01.pdf

CWS/8/2

附件第 61 页

applicationBodyStatus Status of the application body

statusEventData Data associated w ith a legal status event in relation to a
specif ic patent application

keyEventCode A code indicating a broad, high level event that covers the
most general and important situations in a category

Industrial
Designs

/designs applicationDate The date that the application w as f iled

designApplicationCurrentStatus Category of current legal status of the design application

designApplicationCurrentStatusDate Date of the current legal status of the design application

2. The follow ing technical query parameters defined in Table 6 should apply to all the REST API services:

Table 6: API Technical Vocabulary

Query/Path
Parameter

Parameter
Value

Data Type

Constraint Format
Description Design Rule

format string

 type/subtype;
parameter=value

according to RFC7231,
3.1.1.1. Media Type

Used for content-type negotiation
(prefer a HTTP request header) [RSG-19]

v string
 v% w here % is a positive

integer
Used for service versioning (prefer
indicating version as path segment
of the URL)

[RSG-64]

limit integer positive limit=10 The page size used for pagination [RSG-73]

offset integer positive;
default is 0

offset=5 The offset used for pagination [RSG-73]

sort

comma-
separated
list of
strings

Possible
values:

− asc
− desc

sort=key1:asc,key2:desc

Multi-attribute sorting criterion [RSG-74] –
[RSG-76]

expand
comma-
separated
list of
strings

 expand=key1,key2
Used for expanding the body of the
returned content [RSG-77]

count boolean Default is
false

count=true Returns the number of items in a
collection (may be inline) [RSG-81]

apiKey string
 apiKey=abcdef12345

Used to indicate a Web API Key (a
HTTP header should be preferred)

[RSG-137] – [RSG-
138]

[Annex III of ST.XX follow s]

CWS/8/2

附件第 62 页

ANNEX III

RESTFUL WEB API GUIDELINES AND MODEL SERVICE CONTRACT

Final Draft

Proposal by the API Task Force for consideration at the CWS/8

1. Annex III provides tw o example models of Standard-compliant API specif ications which intend to provide guidance to
Intellectual Property Offices (IPOs) w hich wish to develop web services according to this Standard. Details regarding tw o
example models are provided below and Appendixes A and B.

2. It should be noted that the example models w ere produced using a hybrid-approach of contract-first and code-first
approaches.

DocList Example Model

3. The f irst of the example models w as inspired by the IP519 Off ice Open Portal Dossier (OPD) set of w eb services,
provided w ith the same name. The DocList API provides a list of relevant patent documents associated w ith at least an
application or publication number.

Patent Legal Status Example Model

4. The second of the example models is the patent legal status API w hich provides either the history of legal status
events for a particular application number or else the details of a particular legal status event.

 [Appendices A and B to Annex III of ST.XX follow s]

19 The IP5 Offices are comprised of Chinese National Intellectual Property Administration (CNIPA), European Patent Office (EPO),
Japan Patent Office (JPO), Korean Intellectual Property Office (KIPO) and the United States Patent and Trademark Office (USPTO).

CWS/8/2

附件第 63 页

APPENDIX A

DOCLIST EXAMPLE MODEL

1. Appendix A provides a link to a zip f ile w hich includes the requirements document w hich outlines the request and
response formats, the YAML specification and the XSD components.

2. Appendix A is available at:
https://www.wipo.int/edocs/mdocs/cws/en/cws_8/cws_8_2-appendixa.zip

APPENDIX B

PATENT LEGAL STATUS EXAMPLE MODEL

1. Appendix B provides a link to zip f ile provided here include the API specif ication provided in RAML, example data
and WIPO Standard ST.96 enumeration lists.

2. Appendix B is available at:
https://www.wipo.int/edocs/mdocs/cws/en/cws_8/cws_8_2-appendixb.zip

[Annex IV of ST.XX follow s]

https://www.wipo.int/edocs/mdocs/cws/en/cws_8/cws_8_2-appendixa.zip
https://www.wipo.int/edocs/mdocs/cws/en/cws_8/cws_8_2-appendixb.zip

CWS/8/2

附件第 64 页

ANNEX IV

HIGH LEVEL SECURITY ARCHITECTURE BEST PRACTICES

Final Draft

Proposal by the API Task Force for consideration at the CWS/8

1. The security architecture defines the services and mechanisms that should be implemented to enforce defined
policies and rules w hile also providing a framework to further standardize and automate security. The core services and
mechanisms of this API Security Framew ork (the development portal, API manager and API gatew ay) provide a grouping of
functionality. These functions can be delivered by discrete applications, bespoke code development, via COTS products or
through leveraging existing technologies that can be configured to provide these functions / services. Some of the
functionality may overlap or be combined into one or more products depending on the vendor used.

2. The recommended security architecture SHOULD have the follow ing API security services and mechanisms:

− A Web API portal to provide functions such as API discovery, API analytics, access to specif ications and
description including SLAs, social netw ork and FAQs;

− A Web API manager to provide centralized API administration and governance for API catalogues,
management of registration and on-boarding of various API developer communities, API lifecycle
management, application of pre-defined security profiles, and security policies lifecycle management;

− A Web API gatew ay to provide security automation capabilities including but not limited to centralized threat
protections, centralized API authentication, authorization, logging, security policy enforcement, message
encryption, monitoring, and analytics;

− A Web API monitoring and analytics service to provide functions such as advanced API services monitoring,
analytics, profile usage for security baselines, changes of usage and demand;

− A credential store to provide capabilities to securely store API keys, secrets, certif icates, etc.;
− A trusted Certif icate Authority (CA) to issue secure certificates and enable trust establishment betw een the

various Offices;
− A Security Information and Event Management system (SIEM) to enable security logs correlation and

advanced security analytics and monitoring;

CWS/8/2

附件第 65 页

− An Identity Provider to manage the identities stored in the LDAP directories and enable authentication; and
− A Web application scanning product that performs regular security scans and performs analysis based on a

trusted security baseline such as OWASP Top 10.

[Annex V of ST.XX follow s]

CWS/8/2

附件第 66 页

ANNEX V

HTTP STATUS CODES

Final Draft

Proposal by the API Task Force for consideration at the CWS/8

1. It is important to align responses around the appropriate HTTP status code and to follow the standard HTTP codes.
In addition to an appropriate status code, there should be a useful and concise description of the error in the body of your
HTTP response. Responses should be specif ic and clear so consumers can come to a conclusion very quickly when using
the API.

2. The set of HTTP status codes is defined on the basis of in RFC7231. The status codes listed below should be used
by an API, w here applicable.

3. The follow ing response status code categories are defined:

− 1xx: Informational - Communicates transfer protocol-level information;
− 2xx: Success - Indicates that the client's request w as accepted successfully;
− 3xx: Redirection - Indicates that the client must take some additional action in order to complete their request;
− 4xx: Client Error - This category of error status codes points the f inger at clients; and
− 5xx: Server Error - The server takes responsibility for these error status codes.

4. The follow ing table consolidates the HTTP Status Codes and provides references to the relative IETF RFCs.

Value Description Reference

100 Continue [RFC7231, Section 6.2.1]

101 Sw itching Protocols [RFC7231, Section 6.2.2]

102 Processing [RFC2518]

103 Early Hints [RFC8297]

104-199 Unassigned
200 OK [RFC7231, Section 6.3.1]

201 Created [RFC7231, Section 6.3.2]

202 Accepted [RFC7231, Section 6.3.3]

203 Non-Authoritative Information [RFC7231, Section 6.3.4]

204 No Content [RFC7231, Section 6.3.5]

205 Reset Content [RFC7231, Section 6.3.6]

206 Partial Content [RFC7233, Section 4.1]

207 Multi-Status [RFC4918]

208 Already Reported [RFC5842]

209-225 Unassigned
226 IM Used [RFC3229]

227-299 Unassigned
300 Multiple Choices [RFC7231, Section 6.4.1]

301 Moved Permanently [RFC7231, Section 6.4.2]

302 Found [RFC7231, Section 6.4.3]

303 See Other [RFC7231, Section 6.4.4]

304 Not Modif ied [RFC7232, Section 4.1]

305 Use Proxy [RFC7231, Section 6.4.5]

http://www.iana.org/go/rfc7231

CWS/8/2

附件第 67 页

306 (Unused) [RFC7231, Section 6.4.6]

307 Temporary Redirect [RFC7231, Section 6.4.7]

308 Permanent Redirect [RFC7538]

309-399 Unassigned
400 Bad Request [RFC7231, Section 6.5.1]

401 Unauthorized [RFC7235, Section 3.1]

402 Payment Required [RFC7231, Section 6.5.2]

403 Forbidden [RFC7231, Section 6.5.3]

404 Not Found [RFC7231, Section 6.5.4]

405 Method Not Allow ed [RFC7231, Section 6.5.5]

406 Not Acceptable [RFC7231, Section 6.5.6]

407 Proxy Authentication Required [RFC7235, Section 3.2]

408 Request Timeout [RFC7231, Section 6.5.7]

409 Conflict [RFC7231, Section 6.5.8]

410 Gone [RFC7231, Section 6.5.9]

411 Length Required [RFC7231, Section 6.5.10]

412 Precondition Failed [RFC7232, Section 4.2][RFC8144, Section 3.2]

413 Payload Too Large [RFC7231, Section 6.5.11]

414 URI Too Long [RFC7231, Section 6.5.12]

415 Unsupported Media Type [RFC7231, Section 6.5.13][RFC7694, Section 3]

416 Range Not Satisf iable [RFC7233, Section 4.4]

417 Expectation Failed [RFC7231, Section 6.5.14]

418-420 Unassigned
421 Misdirected Request [RFC7540, Section 9.1.2]

422 Unprocessable Entity [RFC4918]

423 Locked [RFC4918]

424 Failed Dependency [RFC4918]

425 Unassigned
426 Upgrade Required [RFC7231, Section 6.5.15]

427 Unassigned
428 Precondition Required [RFC6585]

429 Too Many Requests [RFC6585]

430 Unassigned
431 Request Header Fields Too Large [RFC6585]

432-450 Unassigned
451 Unavailable For Legal Reasons [RFC7725]

452-499 Unassigned
500 Internal Server Error [RFC7231, Section 6.6.1]

501 Not Implemented [RFC7231, Section 6.6.2]

502 Bad Gatew ay [RFC7231, Section 6.6.3]

503 Service Unavailable [RFC7231, Section 6.6.4]

504 Gatew ay Timeout [RFC7231, Section 6.6.5]

505 HTTP Version Not Supported [RFC7231, Section 6.6.6]

506 Variant Also Negotiates [RFC2295]

507 Insuff icient Storage [RFC4918]

CWS/8/2

附件第 68 页

508 Loop Detected [RFC5842]

509 Unassigned
510 Not Extended [RFC2774]

511 Netw ork Authentication Required [RFC6585]

512-599 Unassigned

[Annex VI of ST.XX follow s]

CWS/8/2

附件第 69 页

ANNEX VI

REPRESENTATIONAL TERMS

Final Draft

Proposal by the API Task Force for consideration at the CWS/8

Term Definition Data Type

Amount A monetary value. Number

Category A specif ically defined division or subset in a system of classif ication in
w hich all items share the same concept of taxonomy.

String

Code A combination of one or more numbers, letters, or special characters,
w hich is substituted for a specif ic meaning. Represents f inite,
predetermined values or free format.

String

Date The notion of a specif ic point in time, expressed by year, month, and day. String

Directory Alw ays preceded by PATH String

Document A CLOB stands for "Character Large OBject," which is a specif ic data
type for almost all databases. Quite simply, a CLOB is a pointer to text
stored outside of the table in a dedicated block. Used for XML
documents. Comprised of textual information of International Trademark
Registration being exchanged. XML tags identify the data items
concerned with such information. TIS - Madrid development team may
define the attribute XML_DOC as CLOB, pointer to Tagged Data stored
outside of the table in a dedicated block.

String

Identif ier A combination of one or more integers, letters, special characters which
uniquely identif ies a specif ic instance of a business object, but which
may not have a readily definable meaning.

String

Indicator A signal of the presence, absence, or requirement of something.
Recommended values are Y, N, and, “?” if needed.

Boolean

Measure A measure is a numeric value determined by measuring an object along
w ith the specif ied unit of measure. MeasureType is used to represent a
kind of physical dimension such as temperature, length, speed, w idth,
w eight, volume, latitude of an object. More precisely, MeasureType
should be used to measure intrinsic or physical properties of an object
seen as a w hole.

Number

Name The designation of an object expressed in a w ord or phrase. String

Number A string of numeral or alphanumeric characters expressing label, value,
quantity or identif ication.

Number, String

Percent A number w hich represents a part of a w hole, which will be divided
by 100.

Number

CWS/8/2

附件第 70 页

Term Definition Data Type

Quantity A quantity is a counted number of non-monetary units, possibly including
fractions. Quantity is used to represent a counted number of things.
Quantity should be used for simple properties of an object seen as a
composite or collection or container to quantify or count its components.
Quantity should alw ays express a counted number of things, and the
property w ill be such as total, shipped, loaded, stored. QuantityType
should be used for components that require unit information; and
xsd:nonNegativeInteger should be used for countable components
w hich do not need unit information.

Number

Rate A quantity or amount measured in relation to another quantity or amount. Number

Text An unformatted character string, generally in the form of w ords.
(includes: Abbreviation, Comments.)

String

Time A designation of a specif ied chronological point w ithin a period. Date

DateTime The captured date and time of an event w hen it occurs. Date

URI The Uniform Resource Identif ier that identif ies w here the f ile is located. String

[Annex VII of ST.XX follow s]

CWS/8/2

附件第 71 页

ANNEX VII

API lifecycle management publication

Final Draft

Proposal by the API Task Force for consideration at the CWS/8

1. This Annex provides a brief overview of API Lifecycle management and suggests key pieces of information that
should be published in a policy document by an IP Office to assist API consumers in understanding how best to use these
APIs.

2. API Lifecycle management is a critical aspect of an API strategy as it provides the framew ork for the life of an API
from creation through to retirement. It is useful both internally for the developers and operations teams and also externally
for API consumers. For internal developers, it helps create a structure and set expectations for developing an API, and for
the operations teams it assists w ith the understanding of support requirements. For API consumers, both internally and
externally, it provides an informal contract of expectations for when a particular API is used. This w ill become clear as each
stage in the lifecycle is presented below.

3. Published API lifecycles can be comprised of simple 4-step processes or more complex w ith up to 10 or more steps.
How ever for the most part, the lifecycles with more steps are considered more detailed versions of the lifecycles with fewer
steps. As such, this document w ill focus on the basic 4-step process necessary to capture an API lifecycle: Created ->
Published -> Deprecated -> Retired. Any published API lifecycle document should incorporate at least a description of these
four stages are managed by an IP Office.

Created
4. Creating an API focuses on designing, implementing and documenting the API. The critical consideration during the
creation phase is to consider the purpose of the API and the overall structure necessary to ‘future-proof’ the API as much as
possible. Ideally, the API should adhere to a set of internal and external standards, such those recommendations
incorporated in the current Standard. If the API is to be monetised then consideration should be given at this stage to define
the monetisation strategy.

Published
5. Once an API is created it needs to be published. It should be versioned using a standard versioning strategy and
documentation should be provided including the API specif ication and sample requests and responses (see [RSG-64]-[RSG-
65]). Once published, the API is consumed by applications. Note that f ixes and enhancements may be incorporated during
the Publish stage.

CWS/8/2

附件第 72 页

Deprecated
6. At some point an API is no longer useful. It has either been superseded by a new er version of an API or is the no
longer relevant, because of some external or internal factor. API Consumers should be contacted and preparation made to
remove the API from the catalogue. At this stage it is likely to only major bugs w ith the API w ill be f ixed.

Retired
7. This is the stage w here the API is decommissioned. This should include disabling access to the API and removing it
from API platform. Consideration should be given as to w hether “extended support” will be offered or if there are any cases
in w hich retirement w ould be delayed.

8. The last tw o stages are the most important to document in terms of the lifecycle management, the deprecation and
retirement stages. It is critical for API consumers to understand the expectations placed on them w hen they start to use an
API to avoid disappointment or challenges w hen trying to remove an API from the catalogue. This should include, for
example, management of major and minor versions and any timelines for notif ication of changes. At a high level, there
tends to be tw o approaches to API deprecation/retirement: either retaining a previously stated number of versions, or
retaining old versions for a specified time period. A combination of these approaches can also be used but either the
number of older versions w hich are to be supported or the length of time that old versions are retained must be clearly
stated in the published lifecycle document.

[End of Annex VII and of ST.XX]

[附件和文件完]

	cws_8_2_069924_ZH
	导　言
	拟议的新产权组织标准
	目　标
	范　围
	改进标准草案

	试点实施
	进一步的开发和推广活动

	cws_8_2_annex_058791_ZH
	WIPO STANDARD ST.XX
	INTRODUCTION
	DEFINITIONS AND TERMINOLOGY
	Notations
	General notations
	Rule identifiers

	SCOPE
	WEB API DESIGN PRINCIPLES
	RESTFUL WEB API
	URI Components
	Status Codes
	Pick-and-choose Principle
	Resource Model
	Supporting multiple formats
	HTTP Methods
	GET
	HEAD
	POST
	PUT
	PATCH
	DELETE
	TRACE
	OPTIONS

	Data Query Patterns
	Pagination Options
	Sorting
	Expansion
	Projection
	Number of Items
	Complex Search Expressions

	Error Handling
	Error Payload
	Correlation ID

	Service Contract
	Time-out
	State Management
	Response Versioning
	Caching
	Managed File Transfer

	Preference Handling
	Translation
	Long-Running Operations
	Security Model
	General Rules
	Guidelines for secure and threat-resistant API management
	Encryption, Integrity and non-repudiation
	Authentication and Authorization
	Availability and threat protection
	Cross-domain Requests

	API Maturity Model

	SOAP WEB API
	General Rules
	Schemas
	Naming and Versioning
	Web Service Contract Design
	Attaching Policies to WSDL Definitions
	SOAP – Web Service Security

	Data Type Formats
	CONFORMANCE
	REFERENCES
	WIPO Standards
	Standards and Conventions
	IP Offices’ REST APIs
	Industry REST APIs and Design Guidelines
	Others

	ANNEX I
	ANNEX II
	ANNEX III
	DocList Example Model
	Patent Legal Status Example Model

	Appendix A
	Appendix B
	ANNEX IV
	ANNEX V
	ANNEX VI
	ANNEX VII
	Created
	Published
	Deprecated
	Retired

