Ccws/8/2
BE3X: EX
H#: 20204 108 20 H

FERRLRERGRS (CNS)

FENBEDL
202005 11 A30HE12H4H, BAEKR

% F W% g AL 0 AR R R K

IR By 4 L& S A

=

1. fE2017 45 H29 H&E6 H 2 HBTHISE Hmail b, FPRUHSWREZ s (CWS) e T %S

R 55 Fe AR AEAL) A 2 — (LSO CWS/5/15 36 2 By o bk A TE S BRI A R 1% 26 56 5

f£5%, DM XMLAIP TAFPARERE St ARt R 22 fe TAE (L SCf CWS/5/22 55 92 B &

2. 1E 2018 4F 10 AZMTHIENMU L, ArfEZE i 2 R EARAER SR 5 P AN 1) N R P 4%
M (APD BiE: SB—ANZIR AR5 R4 (0PD) APT Z—IJE K, 58 AL

A PR SR HE ST. 27 B REHRS TS BRI 25 I 5% -

3. 2019 4E 3 HAEKEHREE /REATH XMLATP TAEBA S A], XML4IP TAERAHRE, iZ%#r AP #3
HEANTE XMLATP TAERABAT AV 2 9, FRPR IR, — A8 TAE BN, DT A= BT APT TR R
4. fE 2019 7 ATNELESUE, WREZRASFEERKE 56 SRS ER A N E X —H
Pt a2 BT A3 TAERA , B APT TAEBN (WLSCf CWS/7/29 55 51 BY) . Rk, CWS ibflbik 758 56 5
RSB~ (LS CWS/7/29 55 50 BO -

jilll

1 TRARERRMNER /R (LR « LEEFERRE GEEER R « PEEZRMEZAR (E
) HAREFFT (JPO) s EERET (KIPO) o

CWs/8/2
$5 0

“ONSTRELAR X HLE I8 TR B o2 s 5 W, B (D) TP EIFAUT 1) AR AL
PRI RS (i) RBEV S RNCRAGE S8 a4, (i1 BIRAIZE— SRS R
(URD) fra205E: PAR (iv) SRt i 2% ik 55 il 55 52 1l 7

5. fEHELEENE, FRHER RS T APT TAERRR KT APT b TAEE R, e EiR
PR AR SCE LRI (S CWS/7/4 25 11 2 15 B -

- TE ARG L APT 1 N) XML A1 JSON yufdil;
- TERMER A R IR S5 B B R A RESTful 22445
- WM, AR ATIR AL TE RN TEAR 2R R S AR A A RS B s i — BUE
13 LARRE TR
- W E B —, BRI RESTFul APT Mk 454U A ARAaC 22 Yl
- s R =, BN SOAP APT AL VEH;
- eI RPN, IR AN R LY DL
- HlERELEE APT TRRMGRE AR ORVE) RS, LLRAZE B2 TS R R
PRAEAS B 1) — 57
UEAh, AREZR D2 Bk TARBMR AL HTAR HE R A, EHAE S)\ Jm 2 SOHAT R L (WS CWS/7/29
%53 B

6. MNERHAFERR (CIPO) FIBEE EEAAAUR (UKIPO) #48E N#r APT TAERAM 3L [F] 23k
No ZTAENZIA 50 Ak, H TAEBANRSL LR CZAT TS UOB I, B IR & o 2B il i br i R
HAE SO . 20 XU wiki AIFELS W ERTHE, CXHZHERMER THETB%R, FCH 12,
13 14 B AT 7k —2 Bk vl it. A iE R RES APT TAERA L FZE KNI ZE VG T
TE{

LIS BY B PV R AR

7. B 56 SALSSHIHELZEN, APT TAEBANDL S Z A/ # XMLAIP TAERNZw#LL T —E ML APT H R &IN5
Fg, DRI, A2 FUERE R BUEE, IR 5 S T A SO A B A 19 3B 7 AU b M B 48 IR RS B bs
R R I

8. HbrEIEVOZHT T BUHLbRERF 5144 FK

“RERLLHZARRYE ST, 90—— XM ML APT (AL FHE) ANTE RN AZ 37 MR 77 SO HE
F

H #x

9. fUBGhRAERAERL APT JFARARUEE, BT EAE R 2% G — ARSI RR = B - AR HERY
FE AR FRELLT 24t

- ERESLGEHIER AR S5 BT R DR B

- RIS S AR TR B T A

- EES--RBE S AR

— IR XML BRI R YA SR E A 44 2 AL ORI 5 A Ml 55 F 1) 2 8] a4 R
- R ARIE BATH

CWs/8/2
$5 0

- ARBURT O SV RGP B SR AR N R IME AR 55 DL
- BASWELERRE, JRRE S SR T R SRR
FIEAE|

10. BRAWEZN APT JFRN ARRAHRRIEIA U, B BUESIMZE APT e H 52 [AR
BURAN/ BRI EE R BUR AR S8 IR TAERIJT RN RERAE APT TP AR ARSE R, I8 2% i 55 b B B
(2 PAIAVR Y& €

11, AEEASEHX s, e LG — 7 BRI 4 APT JF&, FF$eTHM%s APT 1 H
BEEME .

B bR HE R R

12 B L0 TEREMARER A B MU LR, X hr R S K A0 7F 7 PO ek
B, TS S SCRUR RIZhR -

(a) XFRUER) AR 73 BEAT T S A BB sl 90 G et A ORI S TE P 4R AR P 20 55
(b) RAL T HH LA HIIEE 6 By, LAk ER B0, BN EDF
“APRHESCAE PSR OER) URL AL, JFARIESbE. 7

(c) W B AR = BRI R B JS K Btk B [RSG-73] F1 [RSG-148] B “ Zi 5L it ” (MUST
implement) [&Z&N “MN5Zjf” (SHOULD implement);

(d) T HES 50 BORIB N [RSG-67], #INE R A APT A= v i A B kg . &1t
FU [RSG-67] 2541«
“TFRN ARG APT AR dn R ISEms, DAFSEIH - T i — MR A, 7

(e) WFBTHRIN [RSG-64) AT THEIE, FRUVGHATHR AAE B, A1 , X &R H /T A
BN
“Mg APT RSCRFG— IR 5 IR B vk, AT RAE A URD BEAT RCACE B2,)0
/api/vl/inventors, ZJHtrk, il Accept-version: v1, X ik
A1, #lln Accept: application/vnd.vil+json. AR A< 7F B AT I AR

IEO » ;

(f) CXHEIHAEU [RSC-91THATIBIE, NMIE ID ARk T HTa B RR. X AHN I HT %3C
WA
“HREMBAC TR A IR A 1D BRI E S HTTP sk, JF HRDAHAr 4
*H% IDo ” 5

(g) TELARIAIGIN T2 98 Br, LARAKUIHIAETT R APT I Sefif i FH REST 2244, AW T 5 8tk
FIEIRHLOCT SOAP FyFTT; BAK

(h) BRI 3 B, LABRALXT RMM FOE S, AR
“ RMM’ FEH-ZMIE REST APT AR OB A AR AR B R, BN O 3 3. 7

https://www.wipo.int/edocs/mdocs/classifications/zh/cws_7/cws_7_4-annex1.docx

CWs/8/2
$5 0

13, BT E3CE 12 B ShritE BB I eah 2 b, X SR AR B 23 OB RV T a0 R
EIE:
(a) BPF—sERE: BRAF— ARG AL, B T ik B2 KR E S L5 T A AL 1 4%
s

(b) PR M 34 TR RESTful APT fML 45 A ARIAIC RS2, Jorh B4 B b
fE= CIHEIDD el S8ostl. HbRRIEREAE T — Mm%, ART:

“APT TAEBNEAEAR REIMEIT AL 41 A REST IP ST. 96 #IZEA1 JSON Ayl 3 H%6E
B, IPBEEE RGRRUE R AL R R, o Kk sS4y, 7

(¢) MMBRBHAE =2 TAFEBAIRE BT AN RS AR 1 — 43

(d) WDUER, JFE BT AR = BBk T C AR, A UL RSO I
FEER 12 BehmbAy™ B PAS APT BSE 51

(e) MMBRBHAE T TAEBATRE AT AN RLFSCA AR v 1 — 3
(F) BN BAR-EABA)\ T3 0 4 EE R 2 5 D B AR D B LRI BR A7
(g) HIGMAEL, 4REEAPT A AN, DFEBN& B8R A IV G EIH, Bk

(h) e =, ¥ ‘receivingOfficeCode’ #l ‘receivingOfficeDate’ %
WL R ER RS “Pra 7 k5 UK
14, bR G 50 Ea W H S W 190080k vH B AR DY o i SRR S) Yk R A L O SO
CWS/7/29 % 43 2 44 BO . REORGIFKHTEIAEL . % — M55 %] OPD APT DocList HJJA
K, LLYAML (Yet Another Markup Language) #2ff, Wi XML. 25 —AMF5 L RAML (RESTful
API Markup Language) &, MiRiM=y XML BY JSON. BT bR 7l i 0o B SOk a5 ml 4 FH B A DY
P it i s N A

R

15. WERASENESWE, EERREAAERRE ST NEEE, FRRITE TR R B2 2 AR
ST UASE . SR AN S APT I RN R B ZbniE %, H A a$E WIPO Sequence
TWH . FRFAAUT IR LL S WIPO Case HIBA .

16, SEREZINBOHbRAE, THESHEIE—ARUI I XML B JSON mi Riks A, JRik ke & &N .
Blan, WRIF RN GLIELE HIE MR AL JSON IR APT, JFREEF R G MER, B AAT 20 fbfl&
FEIT R RE IR A — 2% 3 B d i i 4E R

HE— R T BTN

17, BEEBOKEZE f 38R ITIARA APT SRSEHtL 55 IR 1) HA 25 i 57 SR IR S5, 1 B JRiAAR
B 7B AR PRUR T SEGER APT RURIAL. [Br)R AR EOR BN S5 FR - BUR BEAT IR &, DA T il &0
WHBURAIR APT P SRS IR . v T R RO e X WU 55, JFE R M5 8, APT TAERA
RIS — H 3%, A Ah APT ARG e % H N P SR — AT, TR E & iR
BUR S BEI AT 48 i 5%, FFAETT RERTR D0 T 3R AL TR ks RIDRE. X aVF A B T30t — 38 /K

https://www.wipo.int/standards/en/sequence/
https://www.wipo.int/standards/en/sequence/
https://www.wipo.int/case/en/

CWs/8/2
$5 0

APT St i P A A SR P2 BUR IR0 44 B o A SEBIX — H AR, APT TAEBANEELL, ArdEZR A S ERATS kb
IS APT TAERAGAEH RGeS AL TH, DUKESRIREEN APT (58, FRE~ BN FA
MiZg—Hx. TAENIEEWARHES 2 EORIE T MZE B2 it sttt R .

18. 2020 6 H 17 H, Hbs/m5 APT TAENEIEZEI0 T “APL H” fEZIES), WHl 7£)200 454
HEA BT ES S, BREEREFBUR R PR SR SRR 1B BRI 7 bR B Rt
PR/ BRI . et TSRS APT ARAERE S, APT #a% . pLEmE A AR R 2
(1) APT JFR SN, FFERJG IR T 20 R BURAE T APT FrviESEit APT RGBT . HEFrRE EE KK
AT R AR,

19. API brifEi@id 5, APT TAEBNIG4RSHF S iHe HASRIINGE, QIR =g &% prid, W
fA] SR HUEE R 3 1 T B AL R bR dE ST, 96 XML iRlVC R ANAE H 5 3R AL AR & - B4R dE ST, 96
(K] JSON JiC 3.

20. MZ% AP HURNUSCHbRESRIS briER R 2B 5, % 56 S ESRIE5Em. 2R, APT LAEBAIA
N, HT API MHREARFIKRE, BN —H oAU R bR, TR AL TR, AR s
18 BLHTid i TAE . KL, TAEBAFR USRI IUAT 55 (1 B IS 2 an F
CHEORXS PR R IR ST. 90 BEAT L BEETT FIEE B, S [E BR R &% B T4t APT 1)
Gi—H s SCERE R RHET RS S URE ST. 907
21. FREERA:
(a) EEALHBRLBAAGAE
(b) WAL IR RBARE “CE Ay
A/ ST.90——X T A M APl (B A
AL AR D) A FE ARSI AR W
DS
(c) WA 8 T A R TR A Ay
AL AR ST. 90 ;
(d) WPt A ELF 20 BT §
56 54E 5 BLEAMIEIT; AR
(e) WS g ELE 17 BRI Ak
BA A FERAE R L3R G—B FHE
ETAEPEGRESEF LG APl T4EFA

EE

()5 # M 1]

CwWs/8/2
WY A

WIPO STANDARD ST.XX

RECOMMENDATION FOR PROCESSING AND COMMUNICATING INTELLECTUAL PROPERTY DATA USING WEB
APIS (APPLICATION PROGRAMMING INTERFACES)

Final Draft

Proposal presented by the APl Task Force for consideration at CWS/8.

TABLE OF CONTENTS

WIPO STANDARD ST.XX ittt ettt ettt ettt ettt s et e rhe e e bt e e bt e ea bt e sa st e eh et e b e €2 b e e eaE e e eee e e b et e ket embeeeabeeanbeesaneenineenereens 1
INTRODUGCTION ...ttt e e h e s s b e e s s s h e e e s b e e s b e e s b e e s b e e s b e e s aa e e s ba e e saa e e sra e e snen e
DEFINITIONS AND TERMINOLOGY

(2T L) -1 q o] r= 1o o USSP UPRRURTUSI 4
(RO (=T 01 11 T= TSP P UP PP OPPPRTPR 4
LT] = SRR 5
WEB API DESIGN PRINCIPLES ...ttt ettt et sa e e b et e b e e et e et e e s ab e e s bne e bneentes 6
RESTFUL WEB AP ...ttt h bt ea e s at e e bt o bt e o ke e oo bt e eh bt e b et e ke e et e e emb e e enbeeabbeenbneenbneen 7
URI COIMPONENTS ...ttt ettt ettt ettt e e ek et e sttt e e ek bt e e e aabe e e £ aabe e e 2 oabe e e e aa b e e e e 4ok e e e e 4o b e e a2 2 s be e e e ambe e e e anb s e e e anbbeeeaabbeaeannneeennns 7
SEALUS COUBS......eeeiiieiiiieeiie ettt et e st e saee e saeeeaee s
Pick-and-choose Principle
RESOUICE IMOOEL ...ttt ettt e ettt e s s a b e e e e o ek e e e e ottt e e ok bt e e sk bt e e e st et e e am b et e e anbbeaeanbbeaeabbeaesnsbeaenne 8
SUPPOIING MUIIPIE FOIIMIALSeii ittt e e e bt e e e st e e e e sab et e e e be e e e aabbe e e e bbeaeanbbeaeanbeeean 10
L LI Y (=1 {0 To o LS PSP PP PP OPPUPPURRTIN 11
[e WO TN = oV = 1A= o RO PRPPP SR 16
g o]l o = g o [0 To [OOSR RP PSRRI

Service Contract
Time-out 24

S e Y =T EoTo =T 07T o | PO P PP P PPPPP S PPPPPPPPPPPN 24
PreferEnCe HANGINGoii it e st e e s et e e e st e e e e aste e e e aataeeesntaeeeanseeaeantaeeeaseeeeansaeaeennneeeann 26
JLILEE LA 1 = Lo o TP PP PP PPN 26
LONG-RUNNING OPEIALIONS.........eieiteieteeatieatee et e e teeateeeatee e aeeasteeaateessteeaaseasee e beeaabeesmseeaaseeaseeabeeamseaamseaaneeaasseansenansenans 26
LT o011 Y 1Y (oo L USSP 27
AP MAEIUIIEY IMOOET ...ttt ettt e s bt e e s bt e e e e bt e e e s b bt e e e abe e e e bbb e e e st e e e e anbb e e s anbbeeeanbbeeennnres 31
SOAPWEB API
GENEIAI RUIBS ...ttt h et h e h et h e e s R e e n e e b e e e b e e e e e e e eE e e r e e n e e 32
Schemas 32
N TaaT 1T IV aTo Y=Y (S (o] Tl Vo O PUR PP UROUSRRI 33
WED SEIVICE CONIACT DESIGN. .. . eieteeitieiiee et ettt ettt ettt et et e et e e teeeateeaateeeaeeeabeeeabeeeabeeamseesaeeaaseeaseeamseaamseaanseaaneeaasneansen 34
Attaching Policies t0 WSDL DEfINItIONS.........cc.uieiiiaiii ittt ettt ettt e e st e e saee e saeeasaeeebeeenbeesmeeesneeeaseeanseeanses 34
SOAP — WED SEIVICE SECUMY......veieiiiieieiiiiieeiitie sttt e e sttt e e sttt e e sttt e e s sttt e e s sabe e e s aabe e e e aabee e e aabeeeeaabeeeeaabbeeeabbeaesnbteaeanseeaean 34
Data Type Formats
CONFORMANCEcoiitiitiiee sttt ettt e h e b e h e h e e e e h e R e e et s b e e e R e e et e b e e e b e e r e e s e e e b e e reenneebeenreennas

REFERENCESo e bbb e s a s b e e e b e e s b e b e s s a e s an e sene e

CwWs/8/2
B AR5R 2 11

V= @ S = Tg o = T o L PP RPPPPR 36
StaNAArds AN CONVENTIONS.ciuieiiieiei ettt et a et b e e e bt e sa bt e sab e e she e e be e et e e et e e sateeaheeeabeeenbeeenbeeanneeannean 36
[P OFfICES” REST APIS ...ttt a e h e bt bt e b e e a bt e oa bt e bt e e bt e ek et ekt e sabe e eae e e abbeeabbeenbneenbeeens 37
Industry REST APIs and DeSign GUIEINEScoiuiiiiiiie ettt ettt e e et e e aeeeneeannee e 37
Others 37

ANNEX VII
Created 71
Published 71
(D= o] g=Tot= 1 =T o ISR 72
Retired 72

CwWs/8/2
B AE5R 3 I

INTRODUCTION

1 This Standard provides recommendations on Application Programming Interfaces (APIs) to facilitate the processing
and exchange of Intellectual Property (IP) data in a harmonized w ay overthe Web.

2 This Standard is intended to:

— ensure consistency by establishing uniformweb service design principles;

— improve data interoperability among w eb service partners;

— encourage reusability through unified design;

— promote data naming flexibility across business units through a clearly defined namespace policy in associated
XML resources;

— promote secure information exchange;

— offer appropriate internal business processes as value-added services that can be used by other organizations;
and

— integrate its internal business processes and dynamically link them w ith business partners.

DEFINITIONS AND TERMINOLOGY

3 For the purpose of this Standard, the expressions:

— “Hyper Text Transfer Protocol (HTTP)” is intended to refer to the application protocol for distributed, collaborative,
and hypermedia information systems. HTTP is the foundation of data communication for the World Wide Web.
HTTP functions as a request—response protocolin the service oriented computing model.;

— “Application Programming Interfaces” (APl) means softwarecomponents that provide a reusable interface between
different applications that can easily interact to exchange data;

— “Representational State Transfer (REST)” describes a set of architectural principles by which data can be
transmitted over a standardized interface,i.e. HTTP. REST does not contain an additional messaging layer and
focuses on designrules for creating stateless services;

— “Simple Object Access Protocol (SOAP)” means a protocol for sending and receiving messages between
applications w ithout confronting interoperability issues. SOAPdefines a standard communication protocol (set of
rules) specification for XML-based message exchange. SOAPuses different transport protocols, such as HTTP
and SMTP. The standard protocol HTTP makes it easier for SOAP model to tunnel across firewalls and proxies
w ithout any modifications to the SOAP protocol;

— “Web Service” means a method of communication betw een two applications or electronic machines over the World
Wide Web (WWW) and Web Services are of two kinds: REST and SOAP;

— “RESTful Web API’ means a set of Web Services based on REST architectural paradigmand typically use JSON
or XML to transmit data;

— “SOAP Web API’ means a set of SOAP Web Services based on SOAP and mandate the use of XML as the
payload format;

— “Web Services Description Language (WSDL)" means a W3C Standard that is used w ith the SOAP protocol to
provide a description of a Web Service. This includes the methods a Web Service uses, the parameters it takes
and the means of locating Web Services etc.;

— RESTful API Modelling Language (RAML) refers to alanguage w hich allow s developers to provide a specification
of their API;

— Open API Specification (OAS) refersto alanguage w hich allows developers to provide a specification of their AP

— “Service Contract” (or Web Service Contract) means a document that expresses how the service exposesits
capabilities as functions and resources offered as a published API by the service to other software programs; the
term “REST API documentation” is interchangeably used for the Service Contract for RESTful Web APIs;

— “Service Provider” means a Web Service software exposing a Web Service;

— “Service Consumer” means the runtime role assumed by a software programwhen it accesses and invokes a
service. More specifically, when the programsends a message to a service capability expressed in the service
contract. Uponreceiving the request, the service begins processing and it may or may not return a corresponding
response message to the service consumer;

— “Camelcase” is either the low erCamelCase (e.g., applicantName), or the UpperCamelCase (e.g., ApplicantName)
naming convention;

— Kebab-case is one of the naming conventions w here all are low ercase with hyphens “-“separating words, for
example a-b-c;

— “Open Standards” means the standards that are made available to the general public and are developed (or

approved) and maintained via a collaborative and consensus driven process. “Open Standards”facilitate
interoperability and data exchange among different products of services and are intended for widespread adoption;

— Uniform Resource Identifier (URI) identifies aresource and UniformResource Locator (URL) is a subset of the
URIs thatinclude a netw orklocation;

https://en.wikipedia.org/wiki/Application_protocol
https://en.wikipedia.org/wiki/Hypermedia
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/Request%E2%80%93response

4

CwWs/8/2
B AR5R 4 11

“Entity Tag (ETag)” means an opaque identifier assigned by a w eb server to a specific version of aresource found
at a URL. If the resource representation atthat URL ever changes, anew and different ETag is assigned. ETags
can be compared quickly to determine w hether two representations of aresource are the same;

“Service Registry” means a netw ork-based directory that contains available services;

“RMM’ refers to the Richardson Maturity Model a measure of REST APl maturity using a scale ranging fromO0-3;
and

“Semantic Versioning” means aversioning scheme w here a version is identified by the version number
MAJOR.MINOR.PATCH, w here:

* MAJOR versionw hen you make incompatible APl changes,
* MINOR versionw henyou add functionality in a backw ards-compatible manner and
* PATCH versionw henyou make backw ards-compatible bug fixes.

In terms of conformance in design rules the follow ing keyw ords should be interpreted, in the same manner as

defined in para. 8 of WIPO ST.96%, that is:

MUST: an equivalent to “REQUIRED” or “SHALL”, means that the definition is an absolute requirement of the
specification;

MUST NOT: equivalent to “SHALL NOT”, means that the definition is an absolutely prohibited by the specification;
SHOULD: equivalent to “RECOMMENDED”, means that there may exist valid reasons for ignoring this item, but the
implications of doing so need to be fully considered;

SHOULD NOT: equivalentto “NOT RECOMMENDED", means that there may exist valid reasons w here this behavior
may be acceptable or even useful but the implications of doing so need to be carefully considered; and

MAY: equivalent to “OPTIONAL”", means that this item is truly optional, and is only provided as one option selected
frommany.

NOTATIONS

5

7

General notations

The follow ing notations are used throughout this document:

<>: Indicates a placeholder descriptive termthat, in implementation, w illbe replaced by a specific instance value;
“”: Indicates that the textincluded in quotes mustbe used verbatim in implementation;

{}: Indicates that the items are optional in implementation; and

Courier font:Indicates keywords or source code.

The URLs provided w ithin this Standard are for example purposes only and are not live.

Rule identifiers

All design rules are normative. Design rules are identified through a prefix of [XX-nn] or [XXY -nn].

(a) The value “XX" is a prefix to categorize the type of rule as follow s:

— WS for SOAP Web API designrules;
— RS for RESTful Web API design rules; and
— CS for both SOAP and RESTful WEB API design rule.

(b) The value “Y” is used only for RESTful design rules and provides further granularity on the type of response
that the rule is related to:

— “G"indicates it is a generalrule for both JISON and XML response;
“J"indicates it is for aJSON response; and
— “X’indicates it is an XML response.

(c) The value “nn” indicates the next available number in the sequence of a specific rule type. The number does
not reflect the position of the rule, in particular, for anew rule. A new rule willbe placed in the relevant
context. For example, the rule identifier [WS-4] identifies the fourth SOAPWeb API designrule. The rule [WS-4]

! Please refer the Referenceschapter

CwWs/8/2
B AF55 5 11

can be placed betw een rules [WS-10] and [WS-11] instead of follow ing [WS-3] if that is the most appropriate
location for this rule.

(d) The rule identifier of the deleted rule will be kept w hile the rule text w ill be replaced w ith “Deleted”.

SCOPE

8 This Standard aims to guide the Intellectual Property Offices (IPOs) and other Organizations that need to manage,
store, process, exchange and disseminate IP data using Web APIs. It is intended that by using this Standard, the
development of Web APIs can be simplified and accelerated in a harmonized manner and interoperability among Web APIs
can be enhanced.

9 This Standard intends to cover the communications betw een IPOs and their applicants or data users, and betw een
IPOs through connections betw een devices-to-devices and devices-to-software applications.
WEB API A WEB API B
. Patents R . Patents
» Trademarks equest || + Trademarks
« Designs 7 « Designs
e Geographical < e Geographical
Indications Response Indications
e Others e Others
> Filing Request » Fiing
> Processing < > Processing
» Publication » Publication
> Search Response > Search
> >
Mobile Mobile
Laptop Laptop
Desktop Desktop

Fig. 1 Scope of the Standard

10 This Standard is to provide a set of design rules and conventions for RESTful and SOAP Web APIs; list of IP data
resources which will be exchanged or exposed; and model APl documentation or service contract, which can be used for
customization, describing message format, data structure and data dictionary in JSON? and/or XML format based on WIPO
Standard ST.96.

11 This Standard provides model Service Contracts for SOAPWeb APIs using WSDL and, for RESTful Web APIs using
the REST API Modeling Language (RAML) and Open API Specification (OAS). A Service Contractalso defines or refersto
data types for interfaces (see the Section “Data Type Convention” below). This Standard recommends three types of
interfaces: REST-XML (XSD), REST-JSON and SOAP-XML (XSD).

12 This Standard excludes the follow ing:

(a) Binding to specific implementation technology stacks and commercial off-the-shelf (COTS) products;

(b) Binding to specific architectural designs (for example, Service Oriented Architecture (SOA) or Microservice
Oriented Architecture (MOA));

(c) Binding to specific algorithms such as algorithms for the calculation of ETag, i.e. calculation of a unique identifier
for a specific version of aresource (for example, used for caching).

2 The WIPO JSON Standard iscurrently under discussion but will be based on WIPO Standard ST.96

CwWs/8/2
B 155 6 11

WEB API DESIGN PRINCIPLES

13 Both RESTful Web APIs and SOAP Web APIs have proven their ability to meet the demands of big organizations as
w ellas to service the small-embedded applications in production. When choosing between RESTful and SOAP, the
follow ing aspects can be considered:

— Security, e.g., SOAP has WS-Security w hile REST does not specify any security patterns;
— ACID Transaction, e.g., SOAP has WS-AT specification while REST does not have a relevant specification;

— Architectural style, e.g., Microservices and Serverless Architecture Style use REST w hile SOA uses SOAPw eb
services;

— Flexibility;
— Bandw idth constraints; and
— Guaranteed delivery, e.g. SOAP offers WS-RMw hile REST does not have arelevant specification.

14 The follow ing service-oriented design principles should be respected when a Web AP is designed:

(@

(b)

(©

(d)
(e)

®
(9)
(h)
0]

0

Standardized Service Contract: Standardizing the service contracts is the most important design principle
because the contracts allow governance and a consistent servicedesign. A service contract should be easy to
implement and understand. A service contract consists of metadata that describes how the service provider
and consumer will interact. Metadata also describes the conditions under which those parties are entitled to
engage in aninteraction. It is recommended that service contracts include:

— Functional requirements: w hat functionality the Service provides and what data it willreturn, or
typically a combination of the tw o;

— Non-functional requirements: information about the responsibility of the providers for providing their
functionality and/or data, as w ell as the expected responsibilities of the consumers of that
information and w hat they will need to provide in return. For example, a consumer’s availability,
security, and other quality of service considerations.

Service Loose Coupling: Clients and services should evolve independently. Applying this design principle
requires:

— Service versioning — Consumers bound to a Web API version should not take the risk of unexpected
disruptions due to incompatible APl changes; and

— The service contract should be independent of the technology details.

Service Abstraction — The service implementation details should be hidden. The APl Design should be
independent of the strategies supported by a server. For example, for the REST Web Service, the APl resource
model should be decoupled fromthe entity model in the persistence layer;

Service Statelessness — Services should be scalable;

Service Reusability — A w ell-designed API should provide reusable services w ith generic contracts. In this
regard, this Standard provides a model service contract;

Service Autonomy — The Service functional boundaries should be w ell defined;

Service Discoverability —Services should be effectively discovered and interpreted;

Service Composability Services can be usedto compose other services;

Using Standards as a Foundation — The API Should follow industry standards (such as IETF, ISO, and OASIS)
w herever applicable, naturally favoring themover locally optimized solutions; and

Pick-and-choose Principle — It is notrequired to implement all the API design rules. The design rules should be
chosen based on the implementation of each concrete case.

15 In addition, the follow ing principles should be respectedespecially with regard to the RESTful Web APIs:

(a)
(b)

(©

(d)
©)
)

Cacheable: responses explicitly indicate their cacheability;

Resource identification in requests: individual resources are identified in requests; for example using URIs in
Web-based REST systems. The resourcesthemselves are conceptually separate fromthe representations that
are returned to the client;

Hypermedia as the engine of application state (HATEOAS) - having accessed an initial URI for the REST
application—analogous to an individual accessing the home page of a w ebsite—a REST client should then be
able to use server-provided links dynamically to discover allthe available actions and resources it needs;
Resource manipulation through representations - w hen a client holds a representation of aresource, including
any metadata attached, it has enough information to modify or delete the resource;

Self-descriptive messages - each message includes enough metadata to describe how to process the message
content;
Web API should follow HTTP semantics such as methods, errors etc.;

CwWs/8/2
B AR5 7 11

(g) Available to the public - design w ith the objective that the API will eventually be accessible fromthe public
internet, evenif there are no plans to do so at the moment;

(h) Common authentication - use a common authentication and authorization pattern, preferably based on existing
security components, in order to avoid creating a bespoke solution for each API;

() LeastPrivilege - access and authorization should be assigned to APIconsumers based on the minimal amount
of access they need to carry out the functions required,;

() Maximize Entropy - the randomness of security credentials should be maximized by using APl Keys rather than
username and passw ords for APlauthorization, as APl Keys provide an attack surface that is more challenging
for potential attackers; and

(k) Performance versus security - balance performance with security with reference to key life times and encryption
/ decryption overheads.

RESTFUL WEB API

16 A RESTful Web API allow s requesting systems to access and manipulate textual representations of Web resources
using a uniform and predefined set of stateless operations.

URI Components

17 RESTful Web APl s use URIs to address resources. According to RFC 3986, an URI syntax should be defined as
follow s:

URI = <scheme> ":/[" <authority>"/" <path> {"?" query}
authority = {userinfo@}host{:port}

For example, https://w ipo.int/api/vl/patents?sort=id&offset=10
/ / /
I I I

scheme authority path query parameters

/

18 The forward slash*/” character is used in the path of the URI to indicate a hierarchical relationship betw een
resources but the path must not end w ith aforward slash as it does not provide any semantic value and may cause
confusion.

[RSG-01] The forw ard slash character “/” MUST be used in the path of the URI to indicate a hierarchical relationship
betw een resources but the path MUST NOT end w ith aforward slash.

19 URIs are case sensitive except forthe scheme and host parts. For example, although
https://wipo.int/api/my-resources/uniqueld andhttps://wipo. INT/api/my-resources/uniqueld
are the same, https://wipo. int/api/my-resources/uniqueid is not. For the resource names, the kebab-case
and the low erCamelCase conventions provide good readability and maps the resource names to the entities in the
programming languages w ith simple transformation. For the query parameters, the low erCamelCase should be used. For
example, https://wipo.int/api/vl/inventors?firstName=John. Resource nhames and query parameter are all
case sensitive. Note, that resource names and query parameter names may be abbreviated.

20 A RESTful Web APl may have arguments:

— In the query parameter; for example, /inventors?id=1;
— In the URI path segment parameter, for example, /inventors/1; and
— In the request payload such as part of a JSON body.

21 Except for the aforementioned argument types, w hich are part of the URI, an argument can also be part of the
request payload.

[RSG-02] Resources name MUST be consistent in their naming pattern.

[RSG-03] Resource names in the request SHOULD use kebab-case naming conventions and they MAY be
abbreviated.

[RSG-04] Query parameters MUST be consistent in their naming pattern

https://wipo.int/api/my-resources/uniqueId
https://wipo.int/api/my-resources/uniqueid
https://wipo.int/api/v1/inventors?firstName=John

CwWs/8/2
B 155 8 11T

[RSG-05] Query parameters SHOULD use the low erCamelCase convention and they MAY be abbreviated.

22 A Web APl endpoint must comply with IETF RFC 3986 and should avoid potential collisions w ith page URLs for
the w ebsite hosted on the root domain. A Web APl needs to have one exact entry pointto consolidate all requests. In
general, there are tw o patterns of defining endpoints:

— Asthefirstpath segment of the URI, for example: https://wipo.int/api/v1l/; and
— As subdomain, for example: https://api.wipo.int/v1/

[RSG-06] The URL patternforaWeb API MUST contain the word “api” in the URI.

23 Matrix parameters are an indication that the APl is complex w ith multiple levels of resources and sub-resources.
This goes against the service-oriented design principles, previously defined. Moreover, matrix parameters are not standard
as they apply to a particular path element w hile query parameters apply to the requestas aw hole. Anexample of matrix
parameters is the follow ing: https: //api.wipo. int/v1l/path;paraml=valuel;param2=value2 .

[RSG-07] Matrix parameters MUST NOT be used.

Status Codes

24 A Web APl must consistently apply HTTP status codes as described in [IETF RFCs. HTTP status codes should be
used among the ones listed in the standard HTTP status codes (RFC 7807) reproducedin Annex V.

[RSG-08] A Web APl MUST consistently apply HTTP status codes as described in IETF RFCs.

[RSG-09] The recommended codes in Annex V SHOULD be used by a Web API to classifythe error.

Pick-and-choose Principle

25 A Service Contract should be tolerant to unexpected parameters (in the request, using query parameters) but raise
an error in case of malformed values on expected parameters.

[RSG-10] If the API detects invalid input values, it MUST returnthe HTTP status code “400 Bad Request”. The
error payload MUST indicate the erroneous value.

[RSG-11] If the API detects syntactically correct argument names (in the request or query parameters) that are not
expected, it SHOULD ignore them.

[RSG-12] If the API detects valid values that require features to not be implemented, it MUST return the HTTP
status code “501 Not Implemented”. The error payload MUST indicate the unhandled value.

Resource Model

26 An IP data model should be divided into bounded contexts following a domain-driven design approach. Each
bounded context must be mapped to a resource. According to the design principles, a Web API resource model should

be decoupled fromthe datamodel. A Web API should be modeled as a resource hierarchy to leverage the hierarchical
nature of the URI to imply structure (association or composition or aggregation), w here each node is either a simple (single)
resource or a collection of resources.

27 In this hierarchical resource model, the nodes in the root are called ‘top-levelnodes’ and all of the nested resources
are called ‘sub-resources’. Sub-resources should be used only to imply compositions, i.e. resources that cannot be top-level
resources, otherwise there would be multiple w ay of retrieving the same entities. Such sub-resources, implying association,
are called sub-collections. The other hierarchical structures, i.e. association and aggregation, should be avoided to avoid
complex APIs and duplicate functionality.

28 The endpoint alw ays determines the type of the response. For example, the endpoint
https://wipo.int/api/vl/patents alw aysreturnsresponsesregarding patentresources. The endpoint
https://wipo.int/api/vl/patents/1/inventor alw ays retums responses regarding inventor resources.

How ever, the endpointhttps: //wipo . int/api/v1l/inventors is notallow ed because the inventor resource cannot
be standalone.

https://api.wipo.int/v1/path;param1=value1;param2=value2
https://wipo.int/api/v1/patents
https://wipo.int/api/v1/patents/1/inventor
https://wipo.int/api/v1/inventors

CWS/8/2
BE 25 9 7T
29 Only top-levelresources, i.e. with a maximum of one level should be used, otherwise these APIs w illbe very

complex toimplement. For example, https://wipo.int/api/vl/patents?inventorld=12345 should be used
instead of https://wipo.int/api/vl/inventors/12345/patents .

[RSG-13] A Web APl SHOULD only use top-levelresources. If there are sub-resources, they should be collections
and imply an association. An entity should be accessible as either top-level resource or sub-resource but not
using both w ays.

[RSG-14] If a resource can be stand-alone it MUST be a top-level resource, or otherwise a sub-resource.
[RSG-15] Query parameters MUST be used instead of URL paths to retrieve nested resources.

30 There are types ® of Web APIs: the CRUD (Create, Read, Update, and Delete) Web API and the Intent Web API.
CRUD Web APIs model changes to a resource, i.e., create/read/update/delete operations. Intent Web APIs by contrast
model business operations, e.g., renew/register/publish. CRUD operations should use nouns and Intent Web APIs should
use verbs for the resourcenames. CRUD Web APIs are the most common but both can be combined for example, the
service consumer could use an Intent Web API modeling business operation, w hich would orchestrate the execution of one
or more CRUD Web APIs service operations. Using CRUD Web AP], the service caller has to orchestrate the business
logic but with Intent Web APIs it is the service provider who orchestrates the businesslogic. CRUD Web APIs are not
atomic w hen compared with Intent Web APIs*.

— For example, a trademarks ow ner wants to renew the ones that w ill expire soon (for example, on yyyy-mm-dd).
This is a combination of the follow ing business operations:

— Retrieve marks that willexpire on yyyy-mm-dd; and
— Renew theretrieved marks by their international registration number.

Using a CRUD Web API the previous business operations would be modeled w ith a non-atomic process, requiring
tw o actions such as:

Step 1: Get all the trademarks in XML format® that belong to the holder w ith the name John Smith and w ill expire,
for example, on 2018-12-31:

GET /api/vl/trademarks? holderFul IName=John%20Smi th&expiryDate=2018-12-31. HTTP/1.1
Host: wipo. int
Accept: application/xml

The follow ing example HTTP response is returned:

HTTP/1.1 200 OK
Content-Type: application/xml

<?xml version="1.0" encoding=""UTF-8"?>
<tmk:TrademarkBag xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"’
xmlns: com=""http://www.wipo. int/standards/XMLSchema/ST96/Common"*
xmlns: tmk=""http://wwv.wipo. int/standards/XMLSchema/ST96/Trademark""
Xsi :schemalocation="http://ww .wipo . int/standards/XMLSchema/ST96/ Trademark
TrademarkBag.xsd">

<tmk:Trademark xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance""
xmlns:com="http://ww.wipo. int/standards/XMLSchema/ST96/Common""
xmlns: tmk="http://ww.wipo. int/standards/XMLSchema/ST96/Trademark"
com:operationCategory="Delete"
Xxsi :schemalLocation=""http: //ww .wi po . int/standards/XMLSchema/ST96/ Trademark
Trademark .xsd"">

? Alternatively we could classify APIsaccording to their archetype. Seeforinstance: “REST APIDesign Rulebook Designing
Consistent RESTful Web Service Interfaces’

* An Intent APl also enablesthe application of the Command Query Responsibility Segregation (CQRS) pattemn. CQRS isa pattern,
where you can use a different modelto update information thanthe modelyou use to read information. Therationale isthat for
many problems, particularly in more complicated domains, havingthe same conceptual model forcommandsand queriesleadsto a
more complex model that isnot beneficial.

® JSON example isskipped since it doesnot add any valuein thiscase.

https://wipo.int/api/v1/patents?inventorId=12345
https://wipo.int/api/v1/inventors/12345/patents

CwWs/8/2
BHRER 10 7T

;(-:(-)m:Regi strationNumber>
<com: I POFFiceCode>1T</com: IPOfficeCode>

<com:ST13ApplicationNumbe r>000000000000001</com:ST13ApplicationNumber>
</com:RegistrationNumber>

;(-:(-)m:Expi ryDate>2018-12-31</com:ExpiryDate>
</tmk:-T-r:’;1demark>

</tmk: TrademarkBag>

Step 2: Submit a trademarkrenew alrequest foreach trademarkretrieved in the previous step (depicting here only
the firstrenewal request):

POST /api/v1l/trademarks/renewalRequests HTTP/1.1

Host: wipo. int

Accept: application/xml

Content-Type: application/xml

<?xml version=""1.0" encoding="UTF-8"?>

<tmk:MadridRenewal xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
xmlns: com="http://ww.wipo. int/standards/XMLSchema/ST96/Common"*

xmlns: tmk="http://ww.wipo. int/standards/XMLSchema/ST96/Trademark""

xsi :schemalLocation="http://ww .wi po . int/standards/XMLSchema/ST96/ Trademark
MadridRenewal . xsd">

<com: InternationalRegi strationNumber>000000000000001</com: InternationalRegist
rationNumber>

</tmk:-M5d ridRenewal >

— The previous example could also be modeled w ith an atomic service call using an Intent Web API suchas®:

POST /api/v1/trademarks/findAndRenew?holderFul IName=john%20smi th&expiryDate=2018-
12-31
Host: wipo.int

31 The type of Web API should then place constraints on how the resources are named to provide an indication on
w hich is being used. Note, that resource names that are localized due to business requirements may be in other languages.

[RSG-16] Resource names SHOULD be nouns for CRUD Web APIs and verbs for Intent Web APIs.

[RSG-17] If resource nameis anoun it SHOULD alw ays use the plural form. Irregular noun forms SHOULD NOT
be used. For example, /persons should be used instead of /people.

[RSG-18] Resource names, segment and query parameters MUST be composed of w ords in the English language,
using the primary English spellings provided in the Oxford English Dictionary. Resource names that are localized
due to business requirements MAY be in other languages.

Supporting multiple formats

32 Different service consumers may have differing requirements for the data format of the service responses. The
media type of the data should be decoupled fromthe data itself, allow ing the service to support a range of media types.
Therefore, aWeb API must support content type negotiation using the request HTTP header Acceptand the response
HTTP header Content-Typeas required by IETF RFC 7231. For example, for requesting datain JSON format the header
Accept should be Accept: application/json andfor datain XML formatthe Acceptshould be Accept:
application/xml . Likewise, forthe header Content-Type. Additionally, a Web APl may support other w ays of
content type negotiation such as query parameter (for example ?format)or URL suffix (for example - json).

® The elementIntermationalRegistrationNumber hasbeen removed from the payload to denoteallthe IRNs. The ST.96 shouldbe
not used or relaxed since the example here extendsthe usescases allowed from ST.96.

https://wipo.int/api/v1/findAndRenew?applicantFullName=john

CwWs/8/2
BEARSE 11 3

[RSG-19] A Web APl SHOULD use for content type negotiation the request HTTP header Accept andthe
response HTTP header Content-Type.

33 APIs must support XML and JSON requests and responses. For XML, responses must be compliant w ith WIPO
Standard using XML suchas ST.96”. A consistent mapping betw een these two formats should be used.

[RSG-20] A Web APl MUST support content type negotiation follow ing IETF RFC 7231.
[RSG-21] JSON format MUST be assumed w hen no specific content type is requested.

[RSG-22] A Web API SHOULD returnthe status code “406 Not Acceptable” if arequested format is not
supported.

[RSG-23] A Web API SHOULD reject requests containing unexpected or missing content type headers w ith the
HTTP status code “406 Not Acceptable” or ““415 Unsupported Media Type™.

[RSX-24] The requests and responses (naming convention, message format, data structure, and data dictionary)
SHOULD refer to WIPO Standard ST.96.

[RSJ-25] JSON object property names SHOULD be provided in low erCamelCase, e.g., applicantName.
[RSX-26] XML componentnames SHOULD be provided in UpperCamelCase.
[RSG-27] A Web APl MUST support atleast XML or JSON.

HTTP Methods

34 HTTP Methods (or HTTP Verbs) are a type of function provided by a uniformcontract to processresource identifiers
and data. HTTP Methods must be used as they w ere intended to according the standardized semantics as specified in IETF
RFC 7231 and 5789, namely:

— GET —retrieve data

— HEAD -like GET but w ithout a response payload

— POST —submit new data

— PUT —update

— PATCH —partial update

— DELETE-delete data

— TRACE-echo

— OPTIONS —query verbsthat the server supports for a given URL

35 The uniform contract establishes a set of methods to be used by services within a given collection or inventory.
HTTP Methods tunneling may be usefulw hen HTTP Headers are rejected by some firewalls.

36 HTTP Methods may follow the ‘pick-and-choose’ principle, w hich states that only the functionality needed by the
target usage scenario should be implemented. Some proxies supportonly POST and GET methods. To overcome these
limitations, a Web APl may use a POST method w ith a customHTTP header “tunneling” the real HTTP method.

[RSG-28] HTTP Methods MUST be restricted to the HTTP standard methods POST, GET, PUT, DELETE, OPTIONS,
PATCH, TRACE and HEAD, as specified in IETF RFC 7231 and 5789.

" AJSON specification and JSON schema based on ST.96 are currently under discussion by the XML4IP TF aiming to present them
forconsideration at CWS/8 in November 2020 for consideration/adoption asa new WIPO Standard. Meanwhile, thisstandard
recommendsthe BadgerFish convention due to itssimplicity untilthe JSON schema isprovided. Some IPOs, such as EPO, also
referto it, wvw.epo.org/searching-for-patents/data/web-services/ops.html.

CWS/8/2
BEEE 12 T

[RSG-29] HTTP Methods MAY follow the pick-and-choose principle, w hich states that only the functionality needed
by the target usage scenario should be implemented.

[RSG-30] Some proxies supportonly POST and GET methods. To overcome these limitations, a Web APl MAY
use a POST method w ith a customHTTP header “tunneling” the real HTTP method. The customHTTP header X-
HTTP-Method SHOULD be used.

[RSG-31] If a HTTP Method is not supported, the HTTP status code “405 Method Not Al lowed” SHOULD be
returned.

37 In some use cases, multiple operations should be supported at once.

[RSG-32] A Web APl SHOULD support batching operations (aka bulk operations) in place of multiple individual
requests to achieve latency reduction. The same semantics should be used for HTTP Methods and HTTP status
codes. Theresponse payload SHOULD contain information about all batching operations. If multiple errors occur,
the error payload SHOULD contain information about all the occurrences (in the details attribute). All bulk
operations SHOULD be executed in an atomic operation.

GET

38 Accordingto IETF RFC 2616, the HTTP protocol does not place any prior limit onthe length of a URI. On the other
hand, serversshould be cautious about depending on URI lengths above 255 bytes, because some older client or proxy
implementations may not properly supportthese lengths. In the case w here this limit is exceeded, itis recommended that
named queries are used. Alternatively, a set of rules w hich determine how to convert between and GET and a POST must
be specified. Accordingtothe [ETF RFC 2616, a GET request must be idempotent, in that the response w ill be the same no
matter how many times the requestis run.

[RSG-33] For an end point w hich fetches a single resource, if aresource is not found, the method GET MUST
return the status code “404 Not Found”. Endpoints w hich returnlists of resources will simply return an empty
list.

[RSG-34] If aresource is retrieved successfully, the GET method MUST return 200 OK.
[RSG-35] A GET request MUST be idempotent.

[RSG-36] When the URI length exceeds the 255 bytes, the POST method SHOULD be used instead of GET due to
GET limitations, or else create named queries if possible.

HEAD

39 When a client needs to learn information about an operation, they can use HEAD. HEAD gets the HTTP header you

w ould getif you made a GET request, but w ithout the body. This lets the client determine caching information, w hat content-
type w ould be returned, w hat status code would be returned. A HEAD request MUST be idempotent according to the

IETF RFC 2616.

[RSG-37] A HEAD request MUST be idempotent.

[RSG-38] Some proxies support only POST and GET methods. A Web APl SHOULD supporta customHTTP
request header to override the HTTP Method in order to overcome these limitations.

POST

40 When a client needs to create aresource, they can use POST. For example, the follow ing HTTP request submits a
patent application request.

— For example, the follow ing submits a patent application request.

Example w ith XML payloads based on ST.96

The clients submits the patent application request as XML:

CwWs/8/2
BHARER 13 T

POST /vl/patents/applications HTTP/1.1

Host: wipo.int

Accept: application/xml

Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>

<pat:ApplicationBody xmIns="http://ww .wipo.int/standards/XMLSchema/ST96/Common""
xmlns: xsi="http://ww.w3.0rg/2001/XMLSchema-instance"
xmlns:com="http://ww.wipo. int/standards/XMLSchema/ST96/Common""

xmlns: pat="http://ww.wipo. int/standards/XMLSchema/ST96/Patent""

com: languageCode="pl'" com:receivingOffice="ST" com:st96Version="Vv3 1"
Xsi :schemalLocation="http: //ww .wi po . int/standards/XMLSchema/ST96/Patent
ApplicationBody V3 1.xsd">

</pat:-A-p-p licationBody>

The follow ing HTTP response is returned to denote the successful submission of the patent application:

HTTP/1.1 201 Created

Content-Type: application/xml

<?xml version=""1.0" encoding="UTF-8"?>

<pat:ApplicationBody xmlns="http://ww .wipo . int/standards/XMLSchema/ST96/Common"
xmlns: xsi="http://ww.w3.0rg/2001/XMLSchema-instance"

xmlns: com=""http://www.wipo. int/standards/XMLSchema/ST96/Common""

xmlns: pat=""http://ww.wipo. int/standards/XMLSchema/ST96/Patent"

com: languageCode=""pI"" com:receivingOffice="ST" com:st96Version="V3_ 1"

xsi :schemalLocation="http://ww .wi po . int/standards/XMLSchema/ST96/Patent
ApplicationBody V3 1.xsd" applicationBodyStatus="pending”>

</pat:-A-p-p licationBody>

Example w ith JSON payloads

The clients submits the patent application request as JSON:

POST /vl/patents/applications HTTP/1.1
Host: wipo.int

Accept: application/json

Content-Type: application/json

"applicationBody ": {
}

The follow ing HTTP response is returned to denote the successful submission of the patent application:

HTTP/1.1 200 OK
Content-Type: application/json

"applicationBody ": {
"applicationBodyStatus™ : "‘pending”,

[RSG-39] A POST request MUST NOT be idempotent according to the IETF RFC 2616.

[RSG-40] If the resource creation was successful, the HTTP header Location SHOULD contain a URI (absolute
or relative) pointing to a created resource.

PUT

CWS/8/2
B2 14 1

[RSG-41] If the resource creation was successful, the response SHOULD contain the status code “201
Created”.

[RSG-42] If the resource creation was successful, the response payload SHOULD by default contain the body of
the created resource, to allow the clientto use it w ithout making an additional HTTP call.

41 When a client needs to replace an existing resource entirely, they can use PUT. [dempotent characteristics of PUT
should be taken into account. A PUT request has an update semantic (as specified in IETF RFC 7231), and an insert
semantic.

PATCH

[RSG-43] A PUT request MUST be idempotent.
[RSG-44] If a resource is notfound, PUT MUST return the status code “404 Not Found”.

[RSG-45] If a resource is updated successfully, PUT MUST return the status code “200 OK”’ if the updated
resourceis returnedor a“204 No Content”if itis not returned.

42 When a clientrequires a partial update, they can use PATCH. Idempotent characteristics of PATCH should be taken
into account.

43

For example, the follow ing request updates only a patent language givenits number:

PATCH /api/vl/patents/publications/100000000000001 HTTP/1.1
Host: wipo.int

I F-Match:456

Content-Type: application/merge-patch+json

{ "languageCode': "en" }

PATCH must not be idempotent accordingto IETF RFC 2616. In order to make it idempotent, the APl may follow

the IETF RFC 5789 suggestion of using optimistic locking.

DELETE

44

[RSG-46] A PATCH request MUST NOT be idempotent.

[RSG-47] if a Web API implements partial updates, idempotent characteristics of PATCH SHOULD be taken into
account. In order to make it idempotent the API MAY follow the IETF RFC 5789 suggestion of using optimistic
locking.

[RSG-48] If a resource is not found PATCHMUST return the status code “404 Not Found™.

[RSJ-49] If a Web APl implements partial updates using PATCH, it MUST use the JSON Merge Patch format to
describe the partial change set, as described in IETF RFC 7386,by using the contenttype app 1 ication/merge-
patch+json.

When a client needs to delete a resource, they can use DELETE. A DELETE request must not be idempotent

according tothe IETF RFC 2616

[RSG-50] A DELETE request MUST NOT be idempotent.

[RSG-51] If a resource is notfound, DELETE MUST return the status code “404 Not Found”.

CwWs/8/2
BHRER 15 T

[RSG-52] If a resource is deleted successfully, DELETE MUST return the status “200 OK”’ if the deleted resource
is returned or “204 No Content” if itis not returned.

TRACE

45 The TRACE method does not carry APl semantics and is used for testing and diagnostic information according to
IETF RFC 2616, for example for testing a chain of proxies. TRACE allow sthe clientto see w hatis being received at the
other end of the request chain and uses that data. A TRACE request MUST NOT be idempotent according to the IETF
RFC 2616.

[RSG-53] The final recipientis either the origin server or the first proxy or gateway to receive aMax-Forwards
value of zeroin the request. A TRACE request MUST NOT include a body.

[RSG-54] A TRACE request MUST NOT be idempotent.
[RSG-55] The value of the Via HTTP header field MUST actto track the request chain.

[RSG-56] The Max-Forwards HTTP header field MUST be used to allow the clientto limit the length of the
request chain.

[RSG-57] If the request s valid, the response SHOULD contain the entire request message in the response body,
withaContent-Type of "message/http".

[RSG-58] Responses to TRACE MUST NOT be cached.

[RSG-59] The status code “200 OK”” SHOULD be returned to TRACE.

OPTIONS

46 When a client needs to learn information about a Web AP, they canuse OPTIONS. OPTIONS do notcarry API
semantics. AnOPT10NSrequest MUST be idempotent according to the IETF RFC 2616, Custom HTTP Headers.

[RSG-60] An OPT 1 0ONS request MUST be idempotent.

47 It is a common practice for aWeb AP using customHTTP headers to provide "X-"as a common prefix, w hich RFC
6648 deprecates and discouragesto use.

[RSG-61] Custom HTTP headers starting w ith the “X-" prefix SHOULD NOT be used.

[RSG-62] Custom HTTP headers SHOULD NOT be usedto change the behavior of HTTP Methods unless it is to
resolve any existing technical limitations (for example, see [RSG-39)).

[RSG-63] The naming convention for customHTTP headers is <organization>-<header name>, where
<organization>and <header>SHOULD follow the kebab-case convention.

48 According to the service-oriented design principles, clients and services should evolve independently. Service
versioning enables this. Common implementations of service versioning are: Header Versioning (by using a custom
header), Query string versioning (for example ?v=v1), Media type versioning (for example Accept:
application/vnd.vl+json)and URI versioning (for example Zapi/v1/inventors).

[RSG-64] A Web APl SHOULD support a single method of service versioning using URI versioning, for example
/api/vl/inventorsor Header versioning, for example Accept-version: v1 or Media type versioning, for
example Accept: application/vnd.v1+json. Query stringversioning SHOULD NOT be used.

49 According to the service-oriented design principles, service providers and consumers should also evolve
independently. The service consumer should not be affected by minor (backward compatible) changes by the service
provider. Therefore, service versioning should use only major versions. For internal non-published APIs (for example, for
development and testing) minor versions may also be used such as Semantic Versioning.

[RSG-65] A versioning-numbering scheme SHOULD be follow ed considering only the major version number (for
example /v1).

CwWs/8/2
BHRER 16 17T

50 Service endpoint identifiers include information that can change over time. [t may not be possible to replace all
referencesto an out-of-date endpoint, which can lead to the service consumer being unable to further interact with the
service endpoint. Therefore, the service provider may return aredirection response. The redirection may be temporary or
permanent. The follow ing HTTP status codes are available:

Permanent Temporary
Allow s changing the request method 301 302
fromPOST to GET
Doesn't allow changing the request 308 307
method from POST to GET

Since 301 and 302 are more generic they are preferred to increase flexibility and overcome any unnecessary complexity.

[RSG-66] API service contracts MAY include endpoint redirection feature. When a service consumer attempts to
invoke a service, aredirection response may be returned to tell the service consumer to resend the requestto a
new endpoint. Redirections MAY be temporary or permanent:

— Temporary redirect - using the HTTP response header Location andthe HTTP status code “302
Found” according to IETF RFC 7231; or

— Permanent redirect - using the HTTP response header Locationandthe HTTP status code “301 Moved
Permanently” according to IETF RFC 7238.

51 As an APl is evolving, it will pass through a series of major phases: planning and designing, developing, testing,
deploying and retiring. Rather than providing recommendations for the time periods that an API should preferably remain in
a particular phase, it is preferable that the Organization or Service providers instead publish their API lifecycle strategy. A
template w hich provides the basic components which define a life cycle strategy in provided in Annex VII.

[RSG-67] API lifecycle strategies SHOULD be published by the developers to assist users in understanding how
long a version w ill be maintained.

Data Query Patterns

Pagination Options

52 Pagination is a mechanismfor aclient to retrieve datain pages. Using pagination, w e prevent overwhelming the
service provider with resource demanding requests according to the design principles. The server should enforce a default
page size in case the service consumer has not specified one. Paginated requests may not be idempotent, i.e. a paginated
request does not create a snapshot of the data.

[RSG-68] A Web APl SHOULD support pagination.
[RSG-69] Paginated requests MAY NOT be idempotent.

[RSG-70] A Web API MUST use query parameters to implement pagination.
[RSG-71] A Web APl MUST NOT use HTTP headers to implement pagination.

[RSG-72] Query parameters Iimit=<number of items to deliver>andoffset=<number of items
to skip>SHOULD be used, w here I imit is the number of items to be returned (page size), and skip the
number of items to be skipped (offset). If nopage size limit is specified, a default SHOULD be defined - global or
per collection; the default offset MUST be zero “0”:

— For example, the follow ing is a valid URL:

https://wipo.int/api/vl/patents?l imit=10&offset=20

[RSG-73] The 1imit andthe ofFfsetparameter values SHOULD be included in the response.

CWS/8/2
MEEE 17 7T

Sorting

53 Retrieving data may require the data to be sorted by ascending or descending order. A multi-key sorting criterion
may also be used. Sorting is determined through the use of the sort query string parameter. The value of this parameter
is acomma-separated list of sort keys and sort directions that can optionally be appended to each sortkey, separated by the

colon’’ character. The supported sort directions are either ‘asc” for ascending or ‘desc” fordescending. The client may
specify asortdirection for each key. If asortdirectionis notspecified for akey, then a default direction is set by the server.

For example:
(a) Only sortkeys specified:
sort=keyl,key?2
‘key1’'is the first key and ‘key?2’ is the second key and sort directions are defaulted by the server.
(b) Some sortdirections specified:
sort=keyl:asc,key2

w here “keyl” is the first key (ascending order) and ‘key2 ” is the second key (direction defaulted by the server,
i.e. any sortkey without a corresponding direction is defaulted).

(c) eachkeys with specified directions:
sort=keyl:asc, key2:desc
w here ‘keyl” is the first key (ascending order) and ‘key2” is the second key (descending order).

54 In order to specify multi-attribute criteria sorting, the value of a query parameter may be a comma-separated list of
sortkeys and sort directions, w ith either ‘asc’ for ascending or ‘desc’ for descending whichmay be appended to each sort
key, separated by the colon ‘' character.

[RSG-74] A Web APl SHOULD support sorting.

[RSG-75] In order to specify a multi-attribute sorting criterion, a query parameter MUST be used. The value of this
parameter is a comma-separated list of sort keys and sort directions either ‘asc’for ascending or ‘desc’for
descending MAY be appended to each sort key, separated by the colon *’ character. The default direction MUST
be specified by the server in case that a sort direction is not specified for a key.

[RSG-76] A Web API SHOULD return the sorting criteria in the response.
Expansion

55 A service consumer may control the amount of data it receives by expanding a single field into larger objects. This is
usually combined w ith Hypermedia support. Rather than simply asking for alinked entity ID to be included, a service caller
canrequestthe full representation of the entity be expanded w ithin the results. Service calls may use expansions to get all
the datathey need in a single APl request:

— For example, if Hypermedia is supported, then the follow ing HTTP requestretrieves a patent and expands its
applicant.

Retrieve a patent based on its number?®;

GET /Zapi/vl/patents/publications/100000000000001 HTTP/1.1
Host: wipo.int
Accept: application/json

8 patent/PatentNumber.xsd

CwWs/8/2
BHRER 18 T

The HTTP response s the follow ing:

HTTP/1.1 200 OK

Content-Type: application/json

200 OK

{

"patentPublication™:{
"bibliographicData: {
"patentGrantldentification: {
“patentNumber': ""100000000000001""

T

T,
"partyBag'': {
"applicantBag": {
"applicant": {
“"href': "https://wipo. int/api/vl/link/to/applicants"

Instead of the previous request, using the follow ing HTTP request retrieves the full applicant information of the
patent w ith number 100000000000001:

GET /api/vl/patents/publications?id=100000000000001&expand=applicant HTTP/1.1
Host: wipo.int
Accept: application/json

The HTTP response is the follow ing:

HTTP/1.1 200 OK

Content-Type: application/json

200 OK

{

“"patentPublication™:{
"bibliographicData: {
"patentGrantldentification”: {
"patentNumber': ""100000000000001"

}

T
"partyBag': {
“applicantBag: {
“applicant”: {
"partyldentifier': ...,
"applicantCategory': ...,

56 A Web APl may support expanding the body of returned content.

CwWs/8/2
BHARER 19 T

[RSG-77] A Web APl MAY support expanding the body of returned content. The query parameter
expand=<comma-separated list of attributes names>SHOULD be used.

Projection

57 A Web API should support field projection, w hich controls how much of an entity’s data is returned in responseto an
API request. The field projection can decrease response time and payload size. If only specific attributes fromthe retrieved
data are required, a projection query parameter must be used instead of URL paths. The query parameter should be formed
as follow s: “Fields="<comma-separated list of attribute names>. A projection query parameter is easier to
implement and can retrieve multiple attributes. If a projectionis supported, the XSD/JSON Schema should not apply in the
response since the response will not be valid against the original XSD/JSON Schema.

— For example, the follow ing request message returns only the fullname of the requested patent inventor:

In_case of XML payloads

Get the patentinventor full name w ith the id equal to id12345:

GET /api/vl/patents/inventors/id12345?fields=FullName
Host: wipo. int
Accept: application/xml

An example for the HTTP response message is shown:

HTTP/1.1 200 OK
Content-Type: application/xml
<?xml version="1.0" encoding="UTF-8"?>
<pat:lnventor xmlns="http://www.wipo.int/standards/XMLSchema/ST96/Common"*
xmlns: xsi="http://ww.w3.0rg/2001/XMLSchema-instance"
xmlns:com="http://ww.wipo. int/standards/XMLSchema/ST96/Common**
xmlns: pat=""http://ww.wipo. int/standards/XMLSchema/ST96/Patent"
com:sequenceNumber=""String" com:id="ID1"
xsi :schemalLocation=""http://ww .wi po . int/standards/XMLSchema/ST96/Patent
PatentPublication_V3 1.xsd">
<Contact>
<Name>
<PersonName>
<PersonFullName>John Smith</PersonFul I Name>
</PersonName>
</Name>
</Contact>
</pat: Inventor>

In_case of JSON payloads

Get the patentinventor full name with the id® equal to id12345:

GET /api/vl/patents/inventors/idl12345?fields=fullName
Host: wipo.int
Accept: application/json

An example for the HTTP response message is shown:

HTTP/1.1 200 OK
Content-Type: application/json

® Common/id.xsd

https://wipo.int/api/v1/inventors/id12345?fields=firstName,lastName
https://wipo.int/api/v1/inventors/id12345?fields=firstName,lastName

CwWs/8/2
BHRER 20 T

"inventor'”: {
"personFul IName': "John Smith"
}

¥

[RSG-78] A query parameter SHOULD be used instead of URL paths in case thata Web API supports projection
follow ing the format: “fie lds="<comma-separated list of attribute names>.

Number of Items

58 In some use cases, the consumer of the APl may be interested in the number of items in a collection. This is very
common w hen combined w ith pagination in order to know the total number of items in the collection.

— For example, the follow ing HTTP request retrieves maximum 3 patent publications, skipping the first 4 results and
should also contain in the response the total number of the available results:

Example w ith XML payloads based on ST.96

GET /api/vl/patents/publications?count=true&limit=3&offset=4 HTTP/1.1
Host: wipo.int
Accept: application/xml

The follow ing example HTTP response is returned:

HTTP/1.1 200 OK

Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>

<pat:PatentPublication xmIns="http://www.wipo. int/standards/XMLSchema/ST96/Common"*
xmlns: xsi="http://ww.w3.0rg/2001/XMLSchema-instance"

xmlns: com=""http://www.wipo. int/standards/XMLSchema/ST96/Common**

xmlns: pat=""http://ww.wipo. int/standards/XMLSchema/ST96/Patent"
com:languageCode=""de" com:st96Version=""V3_1""

xsi :schemalLocation=""http://ww .wi po . int/standards/XMLSchema/ST96/Patent
PatentPublication_V3 1.xsd">

</pat:PatentPublication>
<pat:PatentPublication>
</pat:PatentPublication>
<pat:PatentPublication>
</pat:PatentPublication>
<count>100</count>

Example w ith JSON payloads

GET /Zapi/vl/patents/publications?count=true&limit=38&offset=4 HTTP/1.1
Host: wipo.int
Accept: application/json

The follow ing example HTTP response is returned:

HTTP/1.1 200 OK
Content-Type: application/json

https://wipo.int/api/v1/patents?count=true&limit=3&offset=4
https://wipo.int/api/v1/patents?count=true&limit=3&offset=4

CwWs/8/2
PR 21 3

{
"patentPublication”: [
{
3.
{
3.
{
1.
count': 3
by

59 As one alternative, a Web APl may support returning the number of items in a collection inline, i.e. as the part of the
response that contains the collection itself. Alternatively, it may formpart of a metadata envelope, outside the main body of
the response.

[RSG-79] A Web API MUST support returning the number of items in a collection.

[RSG-80] A query parameter MUST be used to support returning the number of items in a collection.
[RSG-81] The query parameter count SHOULD be used to return the number of items in a collection.

[RSG-82] A Web API MAY support returning the number of items in a collection inline, i.e. as the part of the
response that contains the collection itself. A query parameter MUST be used.

[RSG-83] The query parameter count=true SHOULD be used. If not specified, countshould be set by default
to false.

[RSG-84] If a Web API supports pagination, it SHOULD support returning inline in the response the number of the
collection (i.e. the total number of items of the collection).

Complex Search Expressions

60 For retrieving data w ith only afew search criteria, the query parameters are adequate. If thereis ause casew here
w e should search for data using complex search expressions (with multiple criteria, Boolean expressions and search
operators) then the APl has to be designed using a more complex query language. A query language has to be supported
by a search grammar.

61 The Contextual Query Language (CQL) is aformal language for representing queries to information retrieval
systems such as search engines, bibliographic catalogs and museum collection information. Based on the semantics of
239.50™, its design objective is that queries must be readable and w ritable and that the language is intuitive and maintains
the expression of more complex query languages. This is just one option recommended for use, as itis used broadly by
industry.

[RSG-85] When a Web API supports complex search expressions, a query language SHOULD be specified, such
as CQL.

[RSG-86] A Service Contract MUST specify the grammar supported (such as fields, functions, keywords, and
operators).

[RSG-87] The query parameter “q”” MUST be used.

Error Handling

62 Error responses should always use the appropriate HTTP status code selected fromthe standard list of HTTP status
codes (RFEC 7807), reproduced in Annex V. When the requestor is expecting JSON, return error details in a common data

' please referthe Referenceschapter

https://tools.ietf.org/html/rfc7807

CWS/8/2
2R 22 T

structure. Unless the projectrequires otherwise, there is no need to define application-specific error codes. Stacktrace and
other debugging-related information should not be presentin the error response body in production environments.

Error Payload

63

64

65

Error handling is carried out on tw o levels: on the protocol level (HTTP) and on the application level (payload
returned). Onthe protocollevel,a Web APl returns an appropriate HTTP status code and on the application level, a Web
API returns a payload reporting the error in adequate granularity (mandatory and optional attributes).

With regard to the mandatory and optional attributes for the application level error handling,

(@

(b)

(©

the follow ing code and message attributes are mandatory and w hile the message may change in the future, the
code willnotchange; it is fixed and w ill alw ays refer to this particular problem:

code (integer) - Technical code of the error situation to be used for support purposes; and

message (string) - User-facing (localizable) message describing the error request as requested by the HTTP
header Accept-Language(see RSG-114).

The follow ing attributes are conditionally mandatory:

detai Is - If error processing requires nesting of errorresponses, it must use the details field for this purpose. The
details field must contain an array of JSON objects that shows code and message properties with the same
semantics as described above.

The follow ing attributes are optional:

target- The error structure may contain a target attribute that describes a data element (for example, aresource
path);

status- Duplicate of the HTTP status code to propagate it along the call chain or tow rite itin the supportlog
w ithout the need to explicitly add the HTTP status code every time;

more Info- Array of links containing more information about the error situation, for example, giving hints to the
end user; and

internalMessage — A technical message, for example, for logging purposes.

Error handling should follow HTTP standards (RFC 2616). A minimum error payload is recommended:

For example, the follow ing HTTP responses is returned when trademark w as not found for the provided
international registration number:

Example with XML payload based on ST.96

GET /Zapi/vl/trademarks?irn=000000000000001John%20Smith&expiryDate=2018-12-31.
HTTP/1.1

Host: wipo.int

Accept: application/xml

The follow ing example HTTP response is returned:

HTTP/1.1 404

Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>

<com:TransactionError xmlns:xsi="http://ww .w3.0org/2001/XMLSchema-instance"

xmlns: com=""http://www.wipo. int/standards/XMLSchema/ST96/Common""

xsi :schemalLocation="http://ww .wi po . int/standards/XMLSchema/ST96/Common

TransactionError.xsd"">
<com:TransactionErrorCode>TRADEMARK NOT_ FOUND</com: TransactionErrorCode>
<com:TransactionErrorText>The trademark with the provided International

Registration Number was not found</com:TransactionErrorCode>

Cws/8/2

PR3 23 T
</com: TransactionError>
Example w ith JSON Payload
HTTP/1.1 404
Content-Type: application/json
“error'”: {
""code™: " TRADEMARK_NOT_FOUND ",
"message'’: " The trademark with the provided search criteria was not found",
"target": ""/api/vl/trademarks?irn=000000000000001",
"details": [{
“code': *'000000000000001",
"message'': "The provided international registration number does
not relate to any trademark"'
H
}

[RSG-88] On the protocollevel, aWeb APl MUST return an appropriate HTTP status code selected fromthe list of
standard HTTP Status Codes.

[RSJ-89] On the application level, a Web APl MUST return a payload reporting the error in adequate granularity.
The code and message attributes are mandatory, the detai Is attribute is conditionally mandatory and target,
status, morelnfo, and internalMessage attributesare optional.

[RSG-90] Errors MUST NOT expose security-critical data or internal technical details, such as call stacks inthe
error messages.

[RSG-91] The HTTP Header: Reason-Phrase (described in RFC 2616) MUST NOT be usedto carry error
messages.

Correlation ID

66 Typically consuming a service cascadesto triggering multiple other services. There should be a mechanismto
correlate all the service activations in the same execution context. For example, including the correlation ID in the log
messages, as this uniquely identifies the logged error. A header name should be used. e.g., Request-ID or Correlation-ID
are commonly used, as taking this into accountin design phase of an AP, will foster forward compatibility betw een different
APIs and new er implementations.

[RSG-92] Every logged error SHOULD have a unique Correlation ID. A customHTTP header SHOULD be used
and SHOULD be named Correlation-ID.

Service Contract

67 REST is not a protocol or an architecture, but an architectural style w ith architectural properties and architectural
constraints. There are no official standards for REST APl contracts. This Standard refers to APIdocumentation as a REST
Service Contract. The Service Contractis based on the follow ing three fundamental elements:

(a) Resource identifier syntax —how canwe expresswhere the datais being transferredto or from?

(b) Methods — w hat are the protocol mechanisms used to transfer the data?

() Media types —w hattype of datais being transferred? Individual REST services use these elements in different
combinations to expose their capabilities. Defining a master set of these elements for use by a collection (or
inventory) of services makes this type of service contract "uniform".

[RSG-93] A Service Contract format MUST include the follow ing:

— APl version;

CWS/8/2
B3R 24 11

— Information about the semantics of APl elements;
— Resources;

— Resource attributes;

— Query Parameters;

— Methods;

— Media types;

— Search grammar (if one is supported);

— HTTP Status Codes;

— HTTP Methods;

— Restrictions and distinctive features; and
— Security (e.g. private schemas).

[RSG-94] A Service Contract format SHOULD include requests and responsesin XML schema or JSON Schema
and examples of the API usage in the supported formats, i.e., XML or JSON.

[RSG-95] A REST API MUST provide API documentation as a Service Contract.

[RSG-96] A Web APl implementation deviating fromthis Standard MUST be explicitly documented in the Service
Contract. If a deviating rule is not specified inthe Service Contract, it MUST be assumed that this Standard is
follow ed.

[RSG-97] A Service Contract MUST allow API client skeleton code generation.
[RSG-98] A Service Contract SHOULD allow server skeleton code generation.

68 Web API documentation can be w ritten for example in RESTful APl Modeling Language (RAML), Open API
Specification (OAS) and WSDL. As only RAML fully supports both XML and JSON request/response validation (by using
XSD schemas and JSON schemas), this Standard recommends RAML ™.

[RSG-99] A Web API documentation SHOULD be w ritten in RAML or OAS. Custom documentation formats
SHOULD NOT be used.

Time-out
69 According to the service-oriented design principles, the server usage should be limited.

[RSG-100] A Web API consumer SHOULD be able to specify a server timeout for each request; a customHTTP
header SHOULD be used. A maximum server timeout SHOULD be also used to protect server resourcesfromover-
use.

State Management

70 If development proceeds following the REST principles, state management must be dealt w ith on the client side,
rather than on the server, since REST APIs are stateless. For example, if multiple serversimplement a session, replication
should be discouraged.

Response Versioning

71 Retrieving multiple times the same data set may resultin bandw idth consumption if the data set has not been
modified betw een the requests. Data should be conditionally retrieved only if it has not been modified. This can be done
w ith Content-based Resource Validation or Time-based Resource Validation. If using response versioning, aservice
consumer may implement optimistic locking.

[RSG-101] A Web API SHOULD support conditionally retrieving data, to ensure only data w hich is modified w ill be
retrieved. Content-based Resource Validation SHOULD be used because itis more accurate.

[RSG-102] In order to implement Content-based Resource Validation the ETag HTTP header SHOULD be usedin
the response to encode the data state. Afterward, this value SHOULD be used in subsequent requestsin the

" OAS is a specification. It also supportsMarkdown but RAML doesnot. On the other hand, although both OAS and RAML support
JSON Schema validation forthe requestsand responses, OAS does not support XSDs. Therefore, inthe future, when OAS is
feature-complete it may be recommended.

CwWs/8/2
BrHRER 25 T

conditional HTTP headers (such as If-Match or If-None-Match). If the data has not been modified since the request
returned the ETag, the server SHOULD return the status code “304 Not Mod i fied” (if not modified). This
mechanismis specified in IETF RFC 7231 and 7232.

[RSG-103] In order to implement Time-based Resource Validation the Last-Modi fied HTTP header SHOULD be
used. This mechanismis specified in IETF RFC 7231 and 7232.

[RSG-104] Using response versioning, a service consumer MAY implement Optimistic Locking.

Caching

72 A Web API implementation should support cache handling in order to save bandwidth, in compliance w ith the IETF
RFC 7234.

[RSG-105] A Web API MUST support caching of GET results; a Web APl MAY support caching of results fromother
HTTP Methods.

[RSG-106] The HTTP response headers Cache-Control and Expires SHOULD be used. The latter MAY be
usedto supportlegacy clients.

Managed File Transfer

73 Transferring (i.e. downloading or uploading) large files has a high probability of causing a netw ork interruption or
some other transmission failure. It also consumes alarge amount of memory for both the service provider and service
consumer. Therefore, itis recommended to transfer large files in multiple chunks w ith multiple requests. This option also
provides an indication of the total dow nload or upload progress. The partial transfer of large files should resume support.
The service provider should advertise if it supports the partial transfer of large files.*2

74 There are tw 0 approaches forimplementing this type of transfer: the firstis tousea Transfer-Encoding:
chunked header and the second using the Content-Length header. These headers should not be used together.
Content-Lengthindicates the full size of the file transferred, and therefore the receiverwillknow the length of the body
and w illbe able to estimate the dow nload completiontime. The Transfer-Encoding: chunked header is useful for
streaming infinitely bounded data, such as audio or video, but not files. It is recommended to use the Content-Length
header for dow nloading as the server utilization is low in comparisonto Transfer-Encoding: chunked. For
uploading, the Transfer-Encoding: chunkedheader is recommended.

A Web API should advertise if it supports partial file dow nloads by responding to HEAD requests and replying w ith the HTTP
response headers: Accept-Ranges and Content-Length. The former should indicate the unit that can be used to define
a range and should never be defined as’ none’. The latter indicates the full size of the file to dow nload.

[RSG-107] A Web API SHOULD advertise if it supports partial file dow nloads by responding to HEAD requests and
replying with the HTTP response headers Accept-Rangesand Content-Length.

75 A Web API that supports downloading large files should support partial requests according to IETF RFC 7232, i.e.:

— The service consumer asking for arange should use the HTTP header Range;
— The service provider response should contain the HTTP headers Content-Rangeand Content-Length; and

— The service provider response should have the HTTP status 206 Partial Contentincase of asuccessful
range request. In case of arange request that is out of bounds (range values overlap the extent of the resource),
the serverrespondswitha“416 Requested Range Not Satisfiable™ status. In case the range requested
is not supported, the “200 OK” status is sentbackfroma server.

[RSG-108] A Web API SHOULD support partial file dow nloads. Multi-part ranges SHOULD be supported.

76 Multipart ranges may also be requested if the HTTP header Content-Type: multipart/byteranges;
boundary=XXXXXis used. A range requestmay be conditional if it is combined withETagor 1 f-Range HTTP Headers.

2 The service provider may return the location of the file and then the service consumer can call a directory service to download the
file. Atthe end, a partial file downloadisrequired. Thisparagraph doesnot take into account non-REST protocolssuch as FTP or
SFTP orrsync.

CwWs/8/2
BHRER 26 1T

77 There is not any IETF RFC for large files upload. Therefore, in this Standard w e do not provide any implementation
recommendation for large file uploads.

[RSG-109] A Web API SHOULD advertise if it supports partial file uploads.

[RSG-110] A Web API SHOULD support partial file uploaded. Multi-part ranges SHOULD be supported.

78 The IETF RFC 2616 does notimpose any specific size limit for requests. The APl Service Contract should specify
the maximum limit for the requests. Moreover, on runtime the service provider should indicate to the service consumer if the
allow ed maximum limit has been exceeded.

[RSG-111] The service provider SHOULD return w ith HTTP response headers the HTTP header “413 Request
Entity Too Large”incase the request has exceeded the maximum allow ed limit. A customHTTP header MAY
be used to indicate the maximum size of the request.

Preference Handling

79 A service provider may allow a service consumer to configure values and influence how the former processes the
requests of the latter. A standard means for implementing preference handling is outlined in IETF RFC 7240.

[RSG-112] If a Web API supports preference handling, it SHOULD be implemented accordingto IETF RFC 7240, i.e.
the request HTTP header Prefer SHOULD be used and the response HTTP header Preference-Applied
SHOULD be returned (echoing the original request).

[RSG-113] If a Web API supports preference handling, the nomenclature of preferencesthat MAY be set by using
the Preferheader MUST be recorded in the Service Contract.

Translation

80 A service consumer may request responses in a specific language if the service provider supportsit. A standard
specification for handling of a set of naturallanguages is outlined in IETF TFC 7231.

[RSG-114] If a Web API supports localized data, the request HTTP header Accept-Language MUST be supported
to indicate the set of naturallanguages that are preferred in the response as specified in IETF RFC 7231.

Long-Running Operations

81 There are cases, where aWeb API may involve long running operations. For instance, the generation of a PDF by
the service provider may take some minutes. This paragraph recommends a typical message exchange pattern to
implement such cases, forexample:

/7 (&)
GET https://wipo. int/api/vl/patents
Accept: application/pdf

/7 ()
HTTP/1.1 202 Accepted
Location: https://wipo.int/api/vl/queues/12345

/7 (cl)
GET https://wipo. int/api/vl/queues/ 12345

HTTP/1.1 200 OK

// (c2)

GET https://wipo. int/api/vl/queues/12345
HTTP/1.1 303 See Other

Location: https://wipo.int/api/vl/path/to/pdf

77 (3)
GET https://wipo. int/api/vl/path/to/pdf

CWS/8/2
MEEEE 27 1T

82 If an API supports long-running operations, then they should be performed asynchronously to ensure the user is not
made tow aitfor aresponse. Therule below sets out arecommended approach for implementation.

[RSG-115] If the API supports long-running operations, they SHOULD be asynchronous. The follow ing approach
SHOULD be follow ed:

(a) The service consumer activatesthe service operation;

(b) The service operation returns the status code “202 Accepted’ according to IETF RFC 7231 (section 6.3.3),
i.e. the request has been accepted for processing but the processing has not been completed. The location of
the queued task that w as created is also returned with the HTTP header Location; and

(c) The service consumer calls the returned Location to learnif the resourceis available. If the resource is not
available, the response SHOULD have the status code “200 OK”’, contain the task status (for example pending)
and MAY contain other information (for example, a progress indicator, and/or a link to cancel or delete the task
using the DELETE HTTP method). If the resource is available, the response SHOULD have the status code
“303 See Other” andthe HTTP header Location SHOULD contain the URL to retrieve the task results.

Security Model

General Rules

83 Within the scope of this standard, APl security is concerned with pivotal security attributes that will ensure that
information accessible by an APl and APIs themselves are secure throughout their lifecycle. These attributes are
confidentiality, integrity, availability, trust, non-repudiation, compartmentalization, authentication, authorization and auditing.

[RSG-116] Confidentiality: APIs and API Information MUST be identified, classified, and protected against
unauthorized access, disclosure and eavesdropping at all times. The least privilege, zero trust, need to know and
need to share*® principles MUST be follow ed.

[RSG-117] Integrity-Assurance: APIs and API Information MUST be protected against unauthorized modification,
duplication, corruption and destruction. Information MUST be modified through approved transactions and
interfaces. Systems MUST be updated using approved configuration management, change management and
patch management processes.

[RSG-118] Availability: APIs and API Information MUST be available to authorized users at the right time as
defined in the Service Level Agreements (SLAS), access-control policies and defined business processes.

[RSG-119] Non-repudiation: Every transaction processed or action performed by APIls MUST enforce non-
repudiation through the implementation of proper auditing, authorization, authentication, and the implementation of
secure paths and non-repudiation services and mechanisms.

[RSG-120] Authentication, Authorization, Auditing: Users, systems, APIs or devices involved in critical transactions
or actions MUST be authenticated, authorized using role-based or attribute based access-control services and
maintain segregation of duty. In addition, all actions MUST be logged and the authentication’s strength must
increase w ith the associated information risk.

Guidelinesfor secure and threat-resistant APl management

84 APIs should be designed, built, tested, and implemented w ith security requirements and risks in mind. The
appropriate countermeasures and controls should be built directly into the design and not as an after-thought. ltis
recommended to use best practices and standards, such as OWASP.

[RSG-121] While developing APIs, threats, malicious use cases, secure coding techniques, transport layer security
and security testing MUST be carefully considered, especially:

— PUTsandPOSTs-i.e.: which change to internal data could potentially be used to attack or misinform;

— DELETES —i.e.: could be used to remove the contents of an internal resource repository;

— Whitelist allow able methods- to ensure that allow able HTTP Methods are properly restricted w hile others
w ould return a proper response code; and

B https://www.owasp.org/index.php/Security by Design_Principles

https://www.owasp.org/index.php/Security_by_Design_Principles

CwWs/8/2
BrHRER 28 T

— Well know n attacks should be considered during the threat-modeling phase of the design process to ensure
that the threat risk does not increase. The threats and mitigation defined w ithin OWASP Top Ten Cheat
Sheet' MUST be taken into consideration.

[RSG-122] While developing APIs, the standards and best practices listed below SHOULD be follow ed:

— Secure coding best practices: OWASP Secure Coding Principles;

— Rest API security: REST Security Cheat Sheet;

— Escapeinputs and cross site scripting protection: OWASP XSS Cheat Sheet;

— SQL Injection prevention: OWASP SQL Injection Cheat Sheet, OWASP Parameterization
Cheat Sheet; and

— Transportlayer security: OWASP Transport Layer Protection Cheat Sheet.

[RSG-123] Security testing and vulnerability assessment MUST be carried out to ensure that APIs are secure and
threat-resistant. This requirement MAY be achieved by leveraging Static and Dynamic Application Security Testing
(SAST/DAST), automated vulnerability management tools and penetration testing.

Encryption, Integrity and non-repudiation

85 Protected services must be secured to protect authentication credentials in transit: for example, passwords, APIkeys or
JSON Web Tokens. Integrity of the transmitted data and non-repudiation of action taken should also be guaranteed.
Secure cryptographic mechanisms can ensure confidentiality, encryption, integrity assurance and non-repudiation.
Perfectforward secrecy is one means of ensuring that session keys cannot be compromised.

[RSG-124] Protected services MUST only provide HTTPS endpoints using TLS 1.2, or higher, w ith a cipher suite
that includes ECDHE for key exchange.

[RSG-125] When considering authentication protocols, perfect forward secrecy SHOULD be used to provide
transport security. The use of insecure cryptographic algorithms and backw ards compatibility to SSL 3 and TLS
1.0/1.1 SHOULD NOT be allow ed.

[RSG-126] For maximum security and trust, a site-to-site IPSEC VPN SHOULD be established to further protect
the information transmitted over insecure networks.

[RSG-127] The consuming application SHOULD validate the TLS certificate chain w hen making requests to
protected resources, including checking the certificate revocation list.

[RSG-128] Protected services SHOULD only use valid certificates issued by a trusted certificate authority (CA).

[RSG-129] Tokens SHOULD be signed using secure signing algorithms that are compliant w ith the digital
signature standard (DSS) FIPS —186-4. The RSA digital signature algorithm or the ECDSA algorithm SHOULD be
considered.

Authentication and Authorization

86 Authorization is the act of performing access controlon aresource. Authorization does not just cover the
enforcement of access controls, but also the definition of those controls. This includes the access rules and policies, w hich
should define the required level of access agreeable to both provider and consuming application. The foundation of access
controlis a provider granting or denying a consuming application and/or consumer accessto aresource to a certain level of
granularity. Coarse-grained access should be considered at the APl or the APl gatew ay request point w hile fine-grained
control should be considered at the backend service, if possible. Role Based Access Control (RBAC) or the Attribute Based
Access Control (ABAC) model can be considered.

87 If a serviceis protected, then Open ID Connect should be favored over OAuth 2.0 because it fills many of the gaps of
the latter and provides a standardized way to gain aresource owner's profile data, JISON Web Token (JWT) standardized
token format and cryptography. Other security schemes should not be used such as HTTP Basic Authorization which
requires that the client must keep a password somewhere in clear text to send along w ith each request. Alsothe verification
of this password would be slower because it willhave to access the credential store. OAuth 2.0 does not specify the
security token. Therefore, the JWT token should be used in comparison for example to SAML 2.0, w hich is more verbose.

" https://www.owasp.org/index.php/Top_10-2017_Top_10

https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/Secure_Coding_Principles
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Top_10-2017_Top_10

CWs/8/2
B2 29 T
[RSG-130] Anonymous authentication MUST only be used w hen the customers and the application they are using

accessesinformation or feature with alow sensitivity level which should not require authentication, such as, public
information.

[RSG-131] Username and password or password hash authentication MUST NOT be allow ed.
[RSG-132] I a service is protected, Open ID Connect SHOULD be used.

[RSG-133] Where a JSON Web Token (JWT) is used, a IWT secret SHOULD possess high entropy to increase the
w ork factor of a brute force attack; token TTL and RTTL SHOULD be as short as possible; and sensitive information
SHOULD NOT be stored in the JWT payload.

88 A common security design choice is to centralize user authentication. It should be stored in an Identity Provider (IdP)
or locally at REST endpoints.

89 Services should be carefulto prevent leaking of credentials. Passw ords, security tokens, and AP keys should not
appear in the URL, as this can be captured in w eb serverlogs, which makes themintrinsically valuable. For example, the
follow ingis incorrect (APIKey in URL): https://wipo.int/api/patents?apiKey=a53f435643de32.

[RSG-134] In POST/PUT requests, sensitive data SHOULD be transferred in the request body or by request
headers.

[RSG-135] In GET requests, sensitive data SHOULD be transferredinan HTTP Header.

[RSG-136] In order to minimize latency and reduce coupling betw een protected services, the access control
decision SHOULD be taken locally by REST endpoints.

90 API Keys Authentication: APl keys should be used w herever system-to-systemauthentication is required and they
should be automatically and randomly generated. The inherent risk of this authentication mode is that anyone w ith a copy of
the APl key canuse it as though they w ere the legitimate consuming application. Hence, all communications should comply
w ith RSG-124, to protect the key in transit. The onus is on the application developer to properly protect their copy of the API
key. If the APl key is embedded into the consuming application, it can be decompiled and extracted. If stored in plain text
files, they can be stolen and re-used for malicious purposes. An APIKey must therefore be protected by a credential store
or a secret management mechanism. APl Keys may be used to control services usage even for public services.

[RSG-137] API Keys SHOULD be used for protected and public services to prevent overwhelming their service
provider w ith multiple requests (denial-of-service attacks). For protected services APIKeys MAY be used for
monetization (purchased plans), usage policy enforcement (QoS) and monitoring.

[RSG-138] API Keys MAY be combined w ith the HTTP request header user-agentto discern between a human user
and a software agent as specified in IETF RFC 7231.

[RSG-139] The service provider SHOULD return along w ith HTTP response headers the current usage status. The
follow ing response data MAY be returned:

— ratelimit - ratelimit (per minute) as setin the system;

— ratelimit remaining - remaining amount of requests allow ed during the current time slot (-1 indicates that the
limit has been exceeded); and

— ratelimit reset-time (in seconds) remaining until the request counter will be reset.

[RSG-140] The service provider SHOULD return the status code “429 Too Many Requests” if requestsare
coming in too quickly.

[RSG-141] API Keys MUST be revoked if the client violates the usage agreement, as specified by the IPO.

[RSG-142] API Keys SHOULD be transferred using customHTTP headers. They SHOULD NOT be transferred
using query parameters.

[RSG-143] API Keys SHOULD be randomly generated.

91 While there is an overhead w ith the use of public key cryptography and certificates, certficate-based mutual
authentication should be used w hen a Web API requires stronger authentication than offered by APl keys to provide
additional security. Secure and trusted certificates must be issued by a mutually trusted certificate authority (CA) through a

https://wipo.int/api/patents?apiKey=a53f435643de32

CWS/8/2
MEEEE 30 7T

trust establishment process or cross-certification. To mitigate identity security risks peculiar to sensitive systems and

privileged actions, strong authentication can be leveraged. Certificates shared between the client and the server should be
used, for example X.509.

[RSG-144] Secure and trusted certificates MUST be issued by a mutually trusted certificate authority (CA) through a
trust establishment process or cross-certification.

[RSG-145] Certificates shared between the client and the server SHOULD be used to mitigate identity security risks
particular to sensitive systems and privileged actions, for example X.509.

[RSG-146] For highly privileged services, two-way mutual authentication betw een the client and the server SHOULD
use certificates to provide additional protection.

[RSG-147] Multi-factor authentication SHOULD be implemented to mitigate identity risks for application w ith a high-
risk profile, a systemprocessing very sensitive information or a privileged action.

Availability and threat protection

92 Availability in this context coversthreat protection to minimize API dow ntime, looking at how threats against exposed
APIs can be mitigated using basic design principles. Availability also covers scaling to meet demand and ensuring the
hosting environments are stable etc. These levels of availability are addressed acrossthe hardware and software stacks
that supportthe delivery of APIs. Availability is normally addressed under business continuity and disaster recovery
standards that recommend a risk assessment approach to define the availability requirements.

Cross-domain Requests

93 Certain "cross-domain" requests, notably Ajax requests, are forbidden by default by the same-origin security policy.
Under the same-origin policy, a w eb browser permits scripts contained in afirstweb page to access datainasecondw eb
page, only if both w eb pages have the same origin (i.e. combination of URI scheme, host name, and port number).

94 The Cross-Origin Resource Sharing (CORS) is a W3C standard to flexibly specify which Cross-Domain Requests

are permitted. By delivering appropriate CORS HTTP headers, your REST API signals to the brow ser which domains or
origins are allow ed to make JavaScript calls to the REST service.

95 The JSON w ith padding (JSONP) is a method for sending JSON data w ithout worrying about cross-domain request
issues. It introduces callback functions for the loading of JSON data fromdifferent domains. The idea behindit is based on
the factthatthe HTML <script>tagis notaffected by the same origin policy. Anything imported through this tagis
executed immediately in the global context. Instead of passingin a JavaScript file, one can pass in a URL to a service that
returns JavaScript code.

96 The follow ing approaches are usually follow ed to bypass this restriction:

— JSONP is a workaround for cross-domain requests. Itdoes not offer any error-detection mechanism, i.e. if
there w as anissue and the service failed or responded with an HTTP error, there is no w ay to determine w hat
the issue w ason the client side. The resultw illbe thatthe AJAX applicationwill just ‘hang’. Moreover, the
site that uses JSONP w illunconditionally trustthe JSON provided froma different domain;

— [frame is an alternative w orkaround for cross-domain requests. Using the JavaScriptwindow. postMessage
(message, targetOrigin) method onthe iframe object, it is possible to pass arequestasite of a
differentdomain. lframe approach has good compatibility evenin old brow sers. Moreover, it only supports
GET. The source of the Iframes page should be alw ays be checked due to security issues; and

— CORS is a standardized approach to performa callto an external domain. It can use XMLHttpRequest to
send and receive data and has better error handling mechanism than JSONP. It supports many types of
authorization in comparison to JSONP, w hich only supports cookies. It also supports HTTP Methods in
comparisonto JSONP, w hich only supports GET. On the other hand, it is not alw ays possible to implement
CORS because the brow sers have to support it and because the APl consumers have to be enlisted in the
CORS w hitelist.

[RSG-148] If the REST APl is public, the HTTP header Access-Control-Allow-OriginMUST be setto *.

[RSG-149] If the REST APl is protected, CORS SHOULD be used, if possible. Hse, JSONP MAY be used as
fallback but only for GET requests, for example, w hen the user is accessing using an old brow ser. iframe SHOULD
NOT be used.

CwWs/8/2
BPEER 31 11T

APl Maturity Model

97 It is common to classify a REST API using a maturity model. While various models are available, this Standard
refers to the Richardson Maturity Model (RMM). RMM defines three levels and this Standard recommends Level 2 for REST
APl because Level 3is complex to implement and requires significant conceptual and development-related investment from
service providers and consumers. Atthe same time, it does notimmediately benefit service consumers.

98 If a Web API implements Level 3 of RMM, a hypermedia format must be put in place. Hypertext Application
Language (HAL)"® is simple andis compatible w ith JSSON and XML responses. However itis only a draft recommendation,
along w ith other hypermedia formats, such as JSON-LD®. JSON-Schema®’ should be used because as although there is
currently no specification for Level 3 of RMM, this is considered the most mature. The follow ing hypermedia formats should
not be considered: IETF RFC 5988 and Collection+JSON.,

99 It is recommended that instances described by a schema provide alink to a dow nloadable JSON Schema using the link
relation "describedby", as defined by Linked Data Protocol 1.0, section 8.1 [W3C.REC-ldp-20150226] 8.

In HTTP, suchlinks can be attached to any response using the L i nk header [RFC8288]. An example of such a header
w ould be:

Link: <http://example.com/my-hyper-schema#>; rel=""describedby"

[RSJ-150] If using instances described aschema, the L 1 nk header SHOULD be used to provide a link to a
dow nloadable JSON schema ACCORDING TO RFC8288.

[RSJ-151] A Web APl SHOULD implement at least Level 2 (Transport Native Properties) of RMM. Level 3
(Hypermedia) MAY be implemented to make the API completely discoverable.

100 A customhypermedia format may be designed. In w hich case, a set of attributes is recommended. For example:

{
"link": {
"href'': "/patents",
"rel": "self"
3
}

[RSJ-152] For designing a custom hypermedia format the follow ing set of attributes SHOULD be used enclosed into an
attribute link:

— href—thetarget UR;

— rel —the meaning of the target UR|

— self —theURI referencesthe resource itself;

— next —the URI referencesthe previous page (if used during pagination);

— previous-—the URI referencesthe next page (if used during pagination); and
— arbitrary name v denotes the custommeaning of a relation.

SOAPWEB API

101 This standard recommends the REST architectural style as the preferred approach to APldesign. RESTful
architectures are generally simpler to design, extend, integrate than SOAP. Coverage of SOAP is included here for
completeness; examples and use cases are not provided.

 https://tools.ietf.org/html/draft-kelly-json-hal-08t

' https://www.w3.0rg/T R/json-ld/

Y https://json-schema.org/specification.html#specification-documents
8 http://json-schema.org/latest/json-schema-core.htmi#hypermedia

https://tools.ietf.org/html/draft-kelly-json-hal-08t
https://www.w3.org/TR/json-ld/
https://json-schema.org/specification.html#specification-documents
http://json-schema.org/latest/json-schema-core.html#hypermedia

CwWs/8/2
BYPEER 32 11T

102 A SOAP Web API is a software application identified by URI, w hose interfaces and binding are capable of being
defined, described, and discovered by XML artifacts. Italso supports direct interactions with other software applications
using XML-based messages, viainternet protocols such as SOAPand HTTP.

103 A SOAP-based contractis described ina Web Service Definition Language (WSDL), a W3C standard document.
Throughout this document “Web Service Contract WSDL document” will be referred as just “WSDL".

104 When creating w eb services, there are two development styles: Contract Last and Contract First. When using a
contract-last approach, you start with the code, and let the w eb service contract be generated fromthat. When using
contract-first, you start with the WSDL contract, and use code to implement said contract.

General Rules

105 The Web Service Interoperability (WS-I) Profile is one of the most important standards in regards to SOAP-based
APIs, and it provides a minimum foundation for w riting Web Services that can w orktogether. WS-Iprovides a guideline on
how servicesare “exposed” to each other and how they transfer information (referred to as ‘messaging’). It is a profile for
implementing specific versions of some of the mostimportant Web Service standards such as WSDL, SOAP, XML, etc.
Adhering to certain profiles implicitly indicates adhering to specific versions of these Web Services standards. WS-IBasic
Profile v1.1 provides guidance for using XML 1.0, HTTP 1.1, UDDI, SOAP 1.1, WSDL 1.1, and UDDI 2.0. WS-I Basic Profile
2.0 provides guidance for using SOAP 1.2, WSDL 1.1, UDDI 2.0, WS-Addressing, and MTOM. SOAP 1.2 provides aclear
processing model and leads to better interoperability. WSDL 2.0 w as designed to solve the interoperability issues found in
WSDL 1.1 by using improved SOAP 1.2 bindings.

[WS-01] Al WSDLs MUST conformto WS-I Basic Profile 2.0. WSDL 1.2 MAY be used.

106 A WSDL SOAP binding can be either a Remote Procedure Call (RPC) style binding or a document-style binding. A
SOAP binding can also have an encoded use or a literal use. This gives you five style/use models: RPC/encoded,
RPClliteral, document/encoded, document/literal, document/literal w rapped.

[WS-02] Services MUST follow document-style binding and literal use models (either document/literal or
document/literal w rapped). When there are graphs, the RPC/encoded style MUST be used.

[WS-03] When there are exceptional use cases, such as when there are overloaded operations in the WSDL, all
the other styles SHOULD be used.

107 The concrete WSDL should be separated fromthe abstract WSDL in order to provide a more modular and flexible
interface. The abstract WSDL defines data types, messages, operation, and the port type. The concrete WSDL defines the
binding, portand service.

[WS-04] The WSDL SHOULD be separated into an abstract and a concrete part.
[WS-05] All data types SHOULD be defined in an XSD file and imported in the abstract WSDL.

[WS-06] The concrete WSDL MUST define only one service with one port.

Schemas

108 Schemas used in the WSDL must be compliant w ith WIPO Standard ST.96 Standard. For re-use purposes and
modularity, a schemamust be a separate document thatis either included or imported into the WSDL, instead of defining
directly it in the WSDL. This w ill permit changes in XML structure without changing the WSDL.

[WS-07] The schema defined in thewsd | : types element MUST be imported froma self-standing schemafile, to
allow modularity and re-use.

[WsS-08] Import of an externalschema MUST be implemented using an xsd : importtechnique, notan
xsd: include.

[WS-09] Hement xsd:any MUST NOT be usedto specify aroot element in the message body.

[WS-10] The target namespace for the WSDL (attribute targetNamespace on wsd |l :definitions) MUST be
different fromthe target namespace of the schema (attribute targetNamespace on xsd: schema).

CWS/8/2
MEEE 33 7T

[WS-11] The requests and responses (naming convention, message format, data structure, and data dictionary)
SHOULD follow WIPO Standard ST.96.

Naming and Versioning

109 Appropriate naming conventions should also be applied w hen naming Services and WSDL elements. Naming
conventions should follow those implemented in WIPO Standard ST.96.

[WS-12] Services MUST be named in UpperCamelCase and have a'Service' suffix, for example
https://wipo.int/PatentsService.

[WS-13] WSDL elements message, part, portType, operation, input, output, and binding SHOULD be named in
UpperCamelCase.

[WS-14] Request message hames SHOULD have a ‘Request’ suffix.
[WS-15] Response message names SHOULD have a ‘Response’ suffix.

[WS-16] Operation names SHOULD follow the format of <Verb><Object>{<Quali fier>}, where <Verb>
indicates the operation (preferably Get, Create, Update, or Delete w here applicable) onthe <Ob ject> of the
operation, optionally finally follow ed by a<Qualifier>of the<Object>.

110 All operation names w illhave atleast tw o parts. An optionalthird part may be included to further clarify and/or
specify the business purpose of the operation. The three parts are: <Verb> <Object> <Qualifier - Optional>.
Each partw illbe described in detail below .

Verb —Each operation name w llstartwith averb. The verb examples in common usage are described below :

Verb Description Example
Get Get a single object GetBibData
Create Get a new object CreateBibData
Update Update an object UpdateBibData
Delete Delete an object DeleteCustomer

Object —A noun follow ing a verb will be a succinct and unambiguous description of the business function the
operation is providing. The goal is to provide consumers with a better understanding of what the operation does
w ith no ambiguity. Given thatthe definition of some entities are not common across the various cost centers, the
object may be a composite field w ith the first node being the cost center and the second node the entity, for
example, PatentCustomer.

Qualifier — The purpose of the object qualifier (optional) attribute is, to further clarify the business domain or
subject area, for example, GetCustomerL ist. Get denotes the operation to be acted upon the Customer and
Li st furtherdescribes the fact that the intention is to get a list of Customers not just one customer as in
GetCustomer.

111 Accordingto the service-oriented design principles, service providers and consumers should evolve independently.
The service consumer should not be affected fromminor (backward compatible) changes by the service provider.
Therefore, service versioning should use only major version numbers. For internal APIs (for example, for development and
testing) minor versions may also be used such as Semantic Versioning.

[WS-17] The name of the WSDL file SHOULD conformthe follow ing pattern: <service name>_V<major
version number>

[WS-18] The namespace of the WSDL file SHOULD contain the service version; for
example https://wipo.int/PatentsService/V1”

112 The description of service and its operations is provided as WSDL documentation.

[WS-19] Bement wsdl : documentation SHOULD be usedin WSDL w ith description of service (as the first child
of wsdl :definitions inthe WSDL) and its operations.

CwWs/8/2
BYPEER 34 11T

Web Service Contract Design

113 A Web Service Contract should include a technical interface comprised of a Web Service Definition Language
(WSDL), XML Schema definitions, WS-Policy descriptions as w ell as a non-technical interface comprised of one or more
service description documents.

114 The WSDL, part of the “Service Contract,” must be designed prior to any code development. No WSDL should ever
be auto-generated fromthe code. The motto is “Contract First” and NOT “Code First”. All Web Service Contracts must
conformto Web Service Interoperability Basic Profile (WS-1BP). Any project that auto-generates fromcode w ill be liable to
amendments to ensure conformance to these standards.

Attaching Policies to WSDL Definitions

115 Web Service Contracts can be extended w ith security policies that express additional constraints, requirements, and
gualities that typically relate to the behaviors of services. Security policies can be human-readable and become part of a
supplemental service-level agreement, or can be machine-readable processed at runtime. Machine-readable policies are
defined using the WS-Policy language and related WS-Policy specifications.

[WS-20] Policy expressions MUST be isolated into a separate WS-Policy definition document, w hich is then
referenced within the WSDL document viathe wsp : Pol icyReference element.

[WS-21] Global or domain-specific policies SHOULD be isolated and applied to multiple services.

[WS-22] Policy attachment points SHOULD conformthe WSDL 1.1 or later version, preferably version 2.0,
attachment point elements and corresponding policy subjects (service, endpoint, operation, and message).

SOAP — Web Service Security

116 Web Services Security (WSS): SOAP Message Security is a set of enhancements to SOAP messaging that provides
message integrity and confidentiality. WSS: SOAP Message Security is extensible, and can accommodate a variety of
security models and encryption technologies. WSS: SOAP Message Security provides three main mechanisms that can be
used independently or together:

— The ability to send security tokens as part of a message, and for associating the security tokens with message
content;

— The ability to protect the contents of a message fromunauthorized and undetected modification (message
integrity); and

— The ability to protect the contents of a message fromunauthorized disclosure (message confidentiality).

WSS: SOAP Message Security can be used in conjunction w ith other Web service extensions and application-specific
protocols to satisfy a variety of security requirements.

[WS-23] Web Services using SOAP message SHOULD be protected accordance with WSS:SOAP Standard
recommendations.

DATA TYPE FORMATS

117 This Standard recommends primitive data type formats such as time, date and language to be consistent w ith the
recommendations of WIPO Standard ST.96 w hich are used both for XML and JSON requests and responses and for query
parameters.

[CS-01] Time objects MUST be formatted as specified in IETF RFC 3339 (it is a profile of ISO 8601).
[CS-02] Time zone information SHOULD be used as specified in IETF RFC 3339. For example: 20:54:21+00:00

[CS-03] Date objects MUST be formatted as specified in IETF RFC 3339 (it is a profile of ISO 8601). For example:
2018-10-19

[CS-04] Datetime (i.e. timestamp) objects MUST be formatted as specified in IETF RFC 3339 (itis a profile of ISO
8601).

CWS/8/2
MEEE 35 7T

[CS-05] The relevanttime zone SHOULD be used as specified in IETF RFC 3339. For example: 2017-02-
14720:54:21+00:00

[CS-06] ISO 4217-Alpha (3-Letter Currency Codes) MUST be used for Currency Codes. The precision of the value
(i.e. number of digits after the decimal point) MAY vary depending on the business requirements.

[CS-07] WIPO Standard ST.3 tw o-letter codes be used for representing IPOs, states, other entities, organizations
and for priority and designated countries/organizations.

[CS-08] ISO 3166-1-Alpha-2 Code Elements (2 letter country codes) MUST be used for the representation of the
names of countries, dependencies, and other areas of particular geopolitical interest, on the basis of lists of country
names obtained fromthe United Nations.

[CS-09] ISO 639-1 (2-Letter Language Codes) MUST be used for Language Codes.

[CS-10] Units of Measure SHOULD use the units of measure as described in The Unified Code for Units of Measure
(based on ISO 80000 definitions). For example, for weight measuring using kilograms (kg)

[CSJ-11] Characters used in enumeration values MUST be restricted to the follow ing set: {a-z, A-Z, 0-9, period (.),
comma (,), spaces (), dash (-) and underscore (_).

[CSJ-12] The Representational Terms in Annex VIMUST be used for atomic property names.

[CSJ-13] Acronyms and abbreviations appearing at the beginning of a property name MUST be in low er case.
Otherw ise all values of an enumeration, acronyms and abbreviation values MUST appear in upper case.

CONFORMANCE

118 This Standard is designed as a set of design rules and conventions that can be layered on top of existing or new
Web Service APIs to provide common functionality. Notall services will support all of the conventions defined in the
Standard due to business (forexample, QoS may not be required) or technical constraints (forexample, OAuth 2.0 may
already be used).

119 This Standard defines tw o levels of conformance: A and AA Conformance Levels. Note that rules indicates by MAY
are not considered important w hen determining conformance.

120 The Web Service APIs are encouraged to support as much additional functionality beyond their level of conformance
as is appropriate for their intended scenario.

121 Twoconformancelevels are defined:

— Level A: For Level A conformance, the APl indicates that the required general design rules (RSG), w hich are
identified as ‘MUST' in this Standard, are follow ed. In addition, the rules specific to the type of response
returned must also be complied w ith, In other w ords, the following conformance sub-level are indicated:

0 Level AJ: returning aJSON response, must comply w ith allgeneral level rules (RSG) identified
as MUST as w ellas all JSON specific rules (RSJ) identified as MUST;

0 LevelAX:returningan ST.96 XML instance, must comply w ith all generallevel rules (RSG)
identified as MUST as w ellas all XML specific rules (RSX) identified as MUST; and

0 LevelA: returning either a JSON or XML response, must comply w ith all general level rules
(RSG) identified as MUST as w ellas all JISON specific rules (RSJ) identified as MUST and all
XML specific rules (RSX) identified as MUST.

— Level AA: For Level AA conformance, the APlindicates that is Level A compliant and all the recommended
designrules, w hich are identified as ‘SHOULD' in this Standard, are follow ed. As with Level A, there are sub-
levels dependent upon the type of response:

0 LevelAAJ: Level AJcompliance as w ell as the recommended SHOULD rules applicable to a
JSON response; and

0 LevelAAX: Level AX compliance as w ell as the recommended SHOULD rules applicable to an
XML response.

122 The traceability matric betw een the design rules and the conformance levels is listed in Annex 1.

CWs/8/2
B 36 1T
REFERENCES
WIPO Standards
ST.3 — “Tw o-letter codes for the representation of states, other entities and organizations”

WIPO ST.96 —“Processing of Industrial Property information using XML”

Standards and Conventions

— |[EFT RFC 2119:Key wordsforuse in RFCs to Indicate Requirement Levels — www.ietf.org/rfc/rfc2119.txt

— |EFT RFC 3339: Date and Time on the Internet: Timestamps — www.ietf.org/rfc/rfc3339.txt

— |BEFT RFC 3986: Uniform Resource Identifier (URI): Generic Syntax —w ww.ietf.org/rfc/rfc3986.txt

— |[EFT RFC 5789: PATCH Method for HTTP — https://tools.ietf.org/rfc/rfc5789.txt

— |[EFT RFC 5988: Web Linking — https://tools.ietf.org/rfc/rfc5988.txt

— |EFT RFC 6648: Deprecating the "X-" Prefix and Similar Constructs in Application Protocols
— https:/itools.ietf.org/rfc/rfc6648.txt

— |[EFT RFC 6750: The OAuth 2.0 Authorization Framew ork: Bearer Token Usage
— https://tools..ietf.org/rfc/rfc6750.txt

— |EFT RFC 7231: Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content
—www.ietf.org/rfc/rfc7231.txt

— |IBFT RFC 7232: Hypertext Transfer Protocol (HTTP/1.1) — Conditional Requests www.ietf.org/rfc/rfc7232.txt

— |[EFT RFC 7234: Hypertext Transfer Protocol (HTTP/1.1) — Caching w ww.ietf.org/rfc/rfc7234.txt

- |EFT RFC 7386:JSON Merge Patch — www.ietf.org/rfc/rfc 7386.txt.

— |EFT RFC 7240: Prefer Header for HTTP — https://tools.ietf.org/rfc/rfc7240.txt

— |EFT RFC 7519: JSON Web Token — www.ietf.org/rfc/rfc7519.txt

— |EFT RFC 7540: Hypertext Transfer Protocol Version 2 (HTTP/2) — https://tools.ietf.org/html/rfc7540

— |EFT BCP-47: Tags for Identifying Languages — https://tools.ietf.org/rfc/bcp/bepd 7.txt

— ISO 639-1: Language codes — https://en.wikipedia.orghviki/List_of ISO_639-1_codes

— ISO 3166-1 alpha-2: Tw o-letter acronyms for country codes — https://enw ikipedia.orgiwiki/ISO_3166-1_alpha-
2

— ISO 3166-1 alpha-3: Three-letter acronyms for country codes— https://en.wikipedia.orghviki/ISO_3166-
1_alpha-3

— IS0 4217: Currency Codes —w ww.iso.org/iso/home/standards/currency_codes.htm

— ISO 8601: Date and Time Formats — https://en.w ikipedia.orghviki/ISO_8601

— ObData - https://www.odata.org/

— OASIS OData Metadata Service Entity Model — http://docs.oasis-
open.org/odata/odata/v4.0/os/models/MetadataService.edmx.

— OASIS OData JSON Format Version 4.0. Edited by Ralf Handl, Michael Pizzo, and Mark Biamonte. Latest
version — http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html.

— OASIS OData Atom Format Version 4.0. Edited by Martin Zurmuehl, Michael Pizzo, and Ralf Handl. Latest
version — http://docs.oasis-open.org/odata/odata-atom-format/v4.0/odata-atom-format-v4.0.html.

— OASIS OData "OData Version 4.0 Part 1: Protocol- http://docs.oasis-open.org/odata/odata/v4.0/os/part1-
protocol/odata-v4.0-os-part1-protocol.htmil.

— OASIS OData Version 4.0 Part 2: URL Conventions — http://docs.oasis-open.org/odata/odata/v4.0/os/part2-
url-conventions/odata-v4.0-os-part2-url-conventions.html.

— OASIS OData Version 4.0 Part 3: Common Schema Definition Language (CSDL) — http://docs.oasis-
open.org/odata/odata/v4.0/os/part3-csd/odata-v4.0-os-part3-csdl.html.

— OASIS ABNF components: OData ABNF Construction Rules Version 4.0 and OData ABNF Test
Cases — http://docs.oasis-open.org/odata/odata/v4.0/os/abnf/

— OASIS Vocabulary components: OData Core Vocabulary, OData Measures Vocabulary and OData
Capabilities Vocabulary — http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/

— OASIS XML schemas: OData EDMX XML Schema and OData EDM XML Schema— http://docs.oasis-
open.org/odata/odata/v4.0/os/schemas/

— OASIS SAML 2.0 — http://docs.oasis-open.org/security/sami/Post2.0/sstc-saml-tech-overview-2.0.html

— RAML (ReSTful APl Modeling Language) — http://raml.org

— OpenAPI Initiative — www.openapis.org

— Richardson’s REST API Maturity Model — https://martinfow ler.convarticles/richardsonMaturity Model.html

— HAL —http://stateless.co/hal_specificaton.html

— JSON-LD - https://json-Id.org

— Collection+JSON - Document Format — http://amundsen.com/media-types/collection/format/

— BadgerFish — http://badgerfish.ning.conv

— Semantic Versioning — https://semver.org/

— REST - https://lwww.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

— CQL - https://en.wikipedia.orghviki/Contextual_Query_Language

— Z39.50 - https://www.loc.gov/z3950/agency/Z39-50-2003. pdf

— WS-I Basic Profile 2.0 — http://w s-i.org/profiles/basicprofile-2.0-2010-11-09.html

— WB3C SOAP 1.2 Part 1: Messaging Framew ork — https://www.w 3.0rg/TR/soap12-partl/

— W3C SOAP 1.2 Part 2: Adjuncts — https://wwww 3.0rg/TR/soap12-part2/

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc3339.txt
http://www.ietf.org/rfc/rfc3986.txt
https://tools.ietf.org/rfc/rfc5789.txt
https://tools.ietf.org/rfc/rfc5988.txt
https://tools.ietf.org/rfc/rfc6648.txt
https://tools.ietf.org/rfc/rfc6750.txt
http://www.ietf.org/rfc/rfc7231.txt
http://www.ietf.org/rfc/rfc7232.txt
http://www.ietf.org/rfc/rfc7234.txt
http://www.ietf.org/rfc/rfc7386.txt
https://tools.ietf.org/rfc/rfc7240.txt
http://www.ietf.org/rfc/rfc7519.txt
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/rfc/bcp/bcp47.txt
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3
http://www.iso.org/iso/home/standards/currency_codes.htm
https://en.wikipedia.org/wiki/ISO_8601
https://www.odata.org/
http://docs.oasis-open.org/odata/odata/v4.0/os/models/MetadataService.edmx
http://docs.oasis-open.org/odata/odata/v4.0/os/models/MetadataService.edmx
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-atom-format/v4.0/odata-atom-format-v4.0.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html
http://docs.oasis-open.org/odata/odata/v4.0/os/abnf/
http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/
http://docs.oasis-open.org/odata/odata/v4.0/os/schemas/
http://docs.oasis-open.org/odata/odata/v4.0/os/schemas/
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
http://raml.org/
http://www.openapis.org/
https://martinfowler.com/articles/richardsonMaturityModel.html
http://stateless.co/hal_specification.html
https://json-ld.org/
http://amundsen.com/media-types/collection/format/
http://badgerfish.ning.com/
https://semver.org/
https://www.ics.uci.edu/%7Efielding/pubs/dissertation/rest_arch_style.htm
https://en.wikipedia.org/wiki/Contextual_Query_Language
https://www.loc.gov/z3950/agency/Z39-50-2003.pdf
http://ws-i.org/profiles/basicprofile-2.0-2010-11-09.html
https://www.w3.org/TR/soap12-part1/
https://www.w3.org/TR/soap12-part2/

CWS/8/2
P2 37 T
W3C WSDL Version 2.0 Part 1: Core Language — https://www.w 3.org/TR/w sdI20/

W3C CORS - https://www.w3.org/TR/cors/
W3C Matric Parameters — https://www.w 3.org/Designissues/Matrix URIs.html

IP_Offices’ REST APIs

EPO — Open Patent Services OPS v 3.2 https://developers.epo.org

USPTO - PatentsView http://www.patentsview .org/api/doc.html

WIPO — ePCTv1.1 https://pct.wipo.int/

EUIPO — TMview, Designview , TMclass http:/Avww.tm-xml.org/TM-XML/TM-XML_Xml/TM-XML_TM-
Search.xml

Industry REST APIs and Design Guidelines

Others

Facebook — https://developers.facebook.convdocs/graph-apireference

GitHub — https://developer.github.com/v3

Google APIs Design Guide — https://cloud.google.convapis/design/

Azure — https://docs.microsoft.conven-us/rest/api/

OpenAPI — https://swagger.io/docs/specification/about/

OData — http://www.odata.org/documentation/

JSON API — http://jsonapi.org/format/

Microsoft API Design — https://docs.microsoft.conven-us/azure/architecture/best-practices/api-design
JIRA REST API — https://developer.atlassian.com/serverljira/platformijira-rest-api-examples
Confluece REST API — https://developer.atlassian.conm/server/confluence/

Ebay API — https://developer.ebay.com/api-docs/static/ebay-rest-landing.html

Oracle REST Data Services — http://www.oracle.com/technetwork/developer-tools/rest-data-
services/overview/index.html

PayPal REST API — https://developer.paypal.convdocs/api/overview/

Data on the Web Best Practices — https://www.w 3.org/TR/dw bp/#intro

SAP Guidelines for Future REST APl Harmonization

— https://d.dam.sap.com/m/xAUymP/54014_GB_54014_enUS.pdf

GitHub API — https://developer.github.com/v3/

Zalando — https://github.com/zalando/ReSTful-api-guidelines

Dropbox — https://www.dropbox.com/developers

Tw itter — https://developer.iwitter.com/en/docs

CQRS - https://martinfow ler.com/bliki/ CQRS.html

[TU — https://Iwww.itu.int/en/ITU-T/ipr/Pages/open.aspx

OWASP Rest Security Cheat Sheet — https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
DDD - https://martinfow ler.convbliki/BoundedContext.html

REST Principles — https://en.wikipedia.orghviki/Representational_state_transfer

Open/Closed Principle — https://en.wikipedia.orghviki/Open/closed_principle

Which style of WSDL should | use? — https://www.ibm.convdeveloperworks/libraryiv s-whichwsdl/
https://www.ict govt.nz/guidance-and-resources/standards-compliance/api-standard-and-guidelines/
http://lwww.sabsa.org/node/69

https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Security_by Design_Principles
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_API_Security _Project
https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet
https://lwww.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://nvipubs.nist.gov/nistpubs/fips/nist fips.186-4.pdf
http://docs.oasis-open.orghvss/2004/01/o0asis-200401-wss-soap-message-security-1.0.pdf

SOA Principles of Service Design, Thomas Erl (2008)

[Annex | of ST.XX follow s]

https://www.w3.org/TR/wsdl20/
https://www.w3.org/TR/cors/
https://www.w3.org/DesignIssues/MatrixURIs.html
https://developers.epo.org/
http://www.patentsview.org/api/doc.html
https://pct.wipo.int/
http://www.tm-xml.org/TM-XML/TM-XML_xml/TM-XML_TM-Search.xml
http://www.tm-xml.org/TM-XML/TM-XML_xml/TM-XML_TM-Search.xml
https://developers.facebook.com/docs/graph-api/reference
https://developer.github.com/v3
https://cloud.google.com/apis/design/
https://docs.microsoft.com/en-us/rest/api/
https://swagger.io/docs/specification/about/
http://www.odata.org/documentation/
http://jsonapi.org/format/
https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design
https://developer.atlassian.com/server/jira/platform/jira-rest-api-examples/#getting-metadata-for-creating-issues-examples
https://developer.atlassian.com/server/confluence/
https://developer.ebay.com/api-docs/static/ebay-rest-landing.html
http://www.oracle.com/technetwork/developer-tools/rest-data-services/overview/index.html
http://www.oracle.com/technetwork/developer-tools/rest-data-services/overview/index.html
https://developer.paypal.com/docs/api/overview/
https://www.w3.org/TR/dwbp/#intro
https://d.dam.sap.com/m/xAUymP/54014_GB_54014_enUS.pdf
https://developer.github.com/v3/
https://github.com/zalando/restful-api-guidelines
https://www.dropbox.com/developers
https://developer.twitter.com/en/docs
https://martinfowler.com/bliki/CQRS.html
https://www.itu.int/en/ITU-T/ipr/Pages/open.aspx
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://martinfowler.com/bliki/BoundedContext.html
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Open/closed_principle
https://www.ibm.com/developerworks/library/ws-whichwsdl/
https://www.ict.govt.nz/guidance-and-resources/standards-compliance/api-standard-and-guidelines/
http://www.sabsa.org/node/69
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Security_by_Design_Principles
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_API_Security_Project
https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.186-4.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

ANNEXI

Cws/8/2

426 38 1T

LIST OF RESTFUL WEB SERVICE DESIGN RULES AND CONVENTIONS

Final Draft

Proposal by the API Task Force for considerationat the CWS/8

The follow ing tables summarize service design rules and conventions, and identifies basic conformance requirements in
terms of w hichconformance level, Web Services APlimplementation support. The follow ing is a guide to the tables below :

Table 1 provides asummary ofrules that mustbe complied with in order to achieve a Level AJ compliance
(foraJSON response);

— Table 2 provides a summary of design rules that must be complied w ith in order to achieve a Level AX compliance
(foran XML response) ;

— Table 3 provides asummary of design rules that must be complied with in order to achieve a Level AAJ

compliance (for a JSON response); and

— Table 4 provides a summary of design rules that must be complied w ith in order to achieve aLevel AAX

compliance (for an XML response).

[Editorial Note: Inorder achieve a Level A compliance, itis just necessaryto followrules inboth Tables 1 and 2. In order to
achieve a Level AA compliance, itisnecessaryto followrules in both Tables 3 and 4. The third letter indicates the type of
response provided.]

Table 1: Conformance Table JSON response

Rule ID Rule description Crossreference and remark
[RSG-01] The forward slashcharacter “/” MUST be usedin the path of the URI to
indicate a hierarchical relationship betw een resources but the path
MUST NOT end w ith aforward slash as it does not provide any AJ, AX, AAJ, AAX
semantic value and may cause confusion.
[RSG-02] Resources name MUST be consistentin their naming pattern. AJ, AX, AAJ, AAX
[RSG-04 Query parameters MUST be consistentin their naming pattern AJ, AX
[RSG-06] The URL patternfora Web API MUST containthe word“api”inthe URL. | AJ, AX, AAJ, AAX
[RSG-07] Matrix parameters MUST NOT be used. AJ, AX, AAJ, AAX
[RSG-08] A Web APl MUST consistently apply HTTP status codes as describedin | AJ, AX, AAJ, AAX
IETF RFCs
[RSG-10] If the API detects invalid input values, it MUST returnthe HTTP status AJ, AX, AAJ, AAX
code “400 Bad Request’. The error payload MUST indicate the
erroneous value.
[RSG-12] If the API detects valid values that require features to not be AJ, AX, AAJ, AAX
implemented, it MUST returnthe HTTP status code “501 Not
Implemented’. The error payload MUST indicate the unhandled value.
[RSG-14] If a resource can be stand-alone it MUST be a top-level resource, or AJ, AX, AAJ, AAX
otherw isea sub-resource.
[RSG-15] Query parameters MUST be used instead of URL paths toretrieve AJ, AX,AAJ, AAX
nested resources.
[RSG-18] Resource names, segment and query parameters MUST be composed AJ, AX,AAJ, AAX
of wordsin the English language, using the primary English spellings
provided in the Oxford English Dictionary. Resource names that are
localized due to business requirements MAY be in other languages.
[RSG-20] A Web APl MUST support content type negotiation follow ing IETF RFC AJ, AX, AAJ, AAX
7231.
[RSG-21] JSON format MUST be assumed w hen no specific contenttype is AJ,AX, AAJ, AAX

requested.

RSG-27]

A Web APl MUST supportatleast XML or JSON.

AJ, AX, AAJ, AAX

Cws/8/2

B 39 T
[RSG-28] HTTP Methods MUST be restricted to the HTTP standard methods AJ, AX, AAJ, AAX
POST, GET,PUT, DELETE, OPT IONS, PATCH, TRACE and HEAD, as
specifiedin IETF RFC 7231 and 5789.
[RSG-33] For an end point w hich fetches a single resource, if aresource is not AJ,AX, AAJ, AAX
found, the method GET MUST return the status code “404 Not
Found”. Endpoints w hich retum lists of resourceswill simply return an
empty list.
[RSG-34] If a resourceis retrieved successfully, the GET method MUST return AJ, AX, AAJ, AAX
200 OK.
[RSG-35] A GET request MUST be idempotent. AJ, AX, AAJ, AAX
[RSG-37] A HEAD request MUST be idempotent. AJ, AX,AAJ, AAX
[RSG-39] A POST request MUST NOT be idempotent according to the IETF AJ, AX,AAJ, AAX
RFC 2616.
[RSG-43] A PUT request MUST be idempotent. AJ, AX,AAJ, AAX
[RSG-44] If a resource is not found, PUT MUST return the status code “404 Not AJ, AX,AAJ, AAX
Found”.
[RSG-45] If a resource is updated successfully, PUT MUST return the status code | AJ,AX,AAJ, AAX
“200 OK”if the updated resourceis returned or a“204 No Content’ff
it is not returned.
[RSG-46] A PATCH request MUST NOT be idempotent. AJ,AX,AAJ, AAX
[RSG-48] If a resource is not found PATCH MUST return the status code “404 AJ, AX,AAJ, AAX
Not Found”.
[RSJ-49] If a Web APl implements partial updates using PATCH, it MUST usethe | AJ,AAJ
JSON Merge Patch format to describe the partial change set, as
described in IETF RFC 7386 (by using the contenttype
application/merge-patch+json).
[RSG-50] A DELETErequest MUST NOT be idempotent. AJ,AX,AAJ, AAX
[RSG-51] If a resource is not found, DELETE MUST return the status code “404 AJ, AX, AAJ, AAX
Not Found”.
[RSG-52] If a resource is deleted successfully, DELETE MUST return the status AJ, AX,AAJ, AAX
“200 OK” if the deleted resourceiis returned or “204 No Content”if it
is not returned.
[RSG-53] The final recipient is either the origin server or the first proxy or gateway | AJ, AX, AAJ, AAX
to receive a Max-Forw ards value of zero in the request. A TRACE
request MUST NOT include a body.
[RSG-54] A TRACE request MUST NOT be idempotent. AJ, AX,AAJ, AAX
[RSG-55] The value of the Via HTTP header field MUST act to track the request AJ, AX, AAJ, AAX
chain.
[RSG-56] The Max-Forw ards HTTP header field MUST be usedto allow theclient | AJ,AX, AAJ, AAX
to limit the length of the request chain.
[RSG-58] Responses to TRACE MUST NOT be cached. AJ,AX, AAJ, AAX
[RSG-60] AnOPT IONS request MUST be idempotent. AJ, AX,AAJ, AAX
[RSG-70] A Web APl MUST use query parameters to implement pagination. AJ, AX,AAJ, AAX
[RSG-71] A Web APl MUST NOT use HTTP headers to implement pagination. AJ, AX, AAJ, AAX
[RSG-75] In order to specify a multi-attribute sorting criterion, a query parameter AJ,AX, AAJ, AAX
MUST be used. The value of this parameter is a comma-separated list
of sortkeys and sort directions either ‘asc’for ascending or ‘desc’for
descending MAY be appended to each sort key, separated by the colon
' character. The default direction MUST be specified by the server in
casethata sortdirectionis not specified for akey.
[RSG-76] A Web APl SHOULD return the sorting criteria in the response. AJ, AX, AAJ, AAX
[RSG-79] A Web APl MUST support returning the number of items in a collection. | AJ,AX, AAJ, AAX
[RSG-80] A query parameter MUST be used to support returning the number of AJ,AX, AAJ, AAX
items in a collection.
[RSG-82] A Web APl MAY support returning the number of items in a collection AJ, AX, AAJ, AAX
inline, i.e. as the part of the response that contains the collection itself. A
guery parameter MUST be used.
[RSG-86] A Service Contract MUST specify the grammar supported (such as AJ, AX, AAJ, AAX

fields, functions, keywords, and operators).

Cws/8/2

B 40 T

[RSG-87]

The query parameter “q” MUST be used.

AJ, AX, AAJ, AAX

[RSG-88]

On the protocollevel, a Web API MUST return an appropriate HTTP
status code selected fromthe list of standard HTTP Status Codes.

AJ, AX, AAJ, AAX

[RSJ-89]

On the application level, a Web API MUST return a payload reporting
the error in adequate granularity. The code and message attributes are
mandatory, the details attribute is conditionally mandatory and target,
status, more Info, and i nternal Message attributes are optional.

AJ,AX,AAJ, AAX

[RSG-90]

Errors MUST NOT expose security-critical data or internal technical
details, such as call stacks inthe error messages.

AJ, AX,AAJ, AAX

[RSG-91]

The HTTP Header: Reason-Phrase (described in RFC 2616) MUST
NOT be usedto carry error messages.

AJ,AX,AAJ, AAX

[RSG-93]

A Service Contract format MUST include the follow ing:
— APl version;

— Information about the semantics of API
elements;

— Resources;

— Resource attributes;

— Query Parameters;

— Methods;

— Media types;

— Search grammar (if one is supported);

— HTTP Status Codes;

— HTTP Methods;

— Restrictions and distinctive features; and
Security (if any).

AJ, AX, AAJ, AAX

[RSG-95]

A REST API MUST provide API documentation as a Service Contract.

AJ,AX,AAJ, AAX

[RSG-96]

A Web APl implementation deviating from this Standard MUST

be explicitly documented in the Service Contract. If a deviating rule is
not specified in the Service Contract, it MUST be assumed that this
Standard s follow ed.

AJ,AX,AAJ, AAX

RSG-97]

A Service Contract MUST allow API client skeleton code generation.

AJ,AX,AAJ, AAX

[RSG-105]

A Web APl MUST support caching of GET results; a Web APl MAY
support caching of results fromother HTTP Methods.

AJ,AX,AAJ

[RSG-113]

If a Web API supports preference handling, the nomenclature of
preferencesthat MAY be set by using the Prefer header MUST be
recorded inthe Service Contract.

AAJ, AAX,AJ, AX

[RSG-114]

If a Web API supports localized data, the request HTTP header
Accept-Language MUST be supported to indicate the set of natural
languages that are preferred in the response as specified in [IETF RFC
7231.

AJ,AX,AAJ, AAX

[RSG-116]

Confidentiality: APIs and API Information MUST be identified, classified,
and protected against unauthorized access, disclosure and
eavesdropping at all times. The least privilege, zero trust, need to know
and need to share' principles MUST be follow ed.

AJ,AX, AAJ, AAX

[RSG-117]

Integrity-Assurance: APIs and API Information MUST be protected
against unauthorized modification, duplication, corruption and
destruction. Information MUST be modified through approved
transactions and interfaces. Systems MUST be updated using approved
configuration management, change management and patch
management processes.

AJ, AX,AAJ, AAX

[RSG-119]

Availability: APis and APT Information MUST be available to authorized
users atthe right time as defined in the Service Level Agreements
(SLAs), access-control policies and defined business processes.

AJ,AX,AAJ, AAX

[RSG-119]

Non-repudiation: Every transaction processed or action performed by
APIs MUST enforce non-repudiation through the implementation of
proper auditing, authorization, authentication, and the implementation of
secure paths and non-repudiation services and mechanisms.

AJ, AX, AAJ, AAX

[RSG-120]

Authentication, Authorization, Auditing: Users, systems, APIs or devices
involved in critical transactions or actions MUST be authenticated,
authorized using role-based or attribute based access-control services
and maintain segregation of duty. In addition, all actions MUST be
logged and the authentication’s strength mustincrease w ith the
associated information risk.

AJ,AX,AAJ, AAX

Cws/8/2

BEAFSE 41 T

[RSG-121]

While developing APIs, threats, malicious use cases, securecoding
techniques, transport layer security and security testing MUST be
carefully considered, especially:

— PUTsandPOSTs—i.e.: w hich change to internal data
could potentially be used to attack or misinform;

— DELETES—i.e.: could be used toremove the contents of
an internal resource repository;

— Whitelist allow able methods- to ensure that allow able
HTTP Methods are properly restricted while others would
return a proper response code; and

— Well know n attacks should be considered during the
threat-modeling phase of the design process to ensure
that the threat risk does not increase. The threats and
mitigation defined w ithin OWASP Top Ten Cheat
Sheet MUST be takeninto consideration.

AJ, AX, AAJ, AAX

[RSG-122]

While developing APIs, the standards and best practices listed below
SHOULD be follow ed:

— Secure coding best practices: OWASP Secure Coding
Principles;

— Rest APl security: REST Security Cheat Sheet

— Escapeinputs and cross site scripting protection: OWASP
XSS Cheat Sheet;

— SQL Injection prevention: OWASP SQL Injection Cheat
Sheet, OWASP Parameterization Cheat Sheet; and

— Transportlayer security: OWASP Transport Layer
Protection Cheat Sheet.

AJ, AX,AAX,AAJ

[RSG-123]

Security testing and vulnerability assessment MUST be carried out to
ensure that APIs are secure and threat-resistant. This requirement MAY
be achieved by leveraging Static and Dynamic Application Security
Testing (SAST/DAST), automated vulnerability management tools and
penetration testing.

AJ, AX, AAX,AAJ

[RSG-124]

Protected services MUST only provide HTTPS endpoints using TLS 1.2,
or higher, w ith a cipher suite that includes ECDHE for key exchange.

AJ,AX,AAJ, AAX

[RSG-130]

Anonymous authentication MUST only be used w hen the customers and
the application they are using accesses information or feature with a low
sensitivity level w hich should not require authentication, such as, public
information.

AJ,AX,AAJ, AAX

[RSG-131]

Username and password or password hash authentication MUST NOT
be allow ed.

AJ, AX, AAJ, AAX

[RSG-141]

API' Keys MUST be revoked if the client violates the usage agreement,
as specified by the IP Office.

AJ,AX,AAJ, AAX

[RSG-144]

Secure and trusted certificates MUST be issued by a mutually trusted
certificate authority (CA) through a trust establishment processor cross-
certification.

AJ, AX, AAJ, AAX

[RSG-145]

Certificates shared between the client and the server SHOULD be used
to mitigate identity security risks particular to sensitive systems and
privileged actions, for example X.509.

AJ,AX,AAJ, AAX

[RSG-148]

If the REST API is public, the HTTP header Access-Control-Allow-Orign
MUST be setto *'.

AJ,AX,AAJ, AAX

Table 2: Conformance Table XML response

Rule ID Rule description Crossreference and remark
[RSG-01] The forward slashcharacter “/" MUST be used in the path of the URI to
indicate a hierarchical relationship betw een resources but the path
MUST NOT end with aforward slash as it does not provide any AJ, AX, AAJ, AAX
semantic value and may cause confusion.
[RSG-02] Resources name MUST be consistentin their naming pattern. AJ, AX, AAJ, AAX
[RSG-04] Query parameters MUST be consistent in their naming pattern AJ, AX
[RSG-06] The URL patternfora Web APl MUST contain the word “api"inthe URL. | AJ, AX,; AAJ, AAX
[RSG-07] Matrix parameters MUST NOT be used. AJ, AX, AAJ, AAX
[RSG-08] A Web APl MUST consistently apply HTTP status codes as describedin [AJ, AX,AAJ, AAX

IETF RFCs

https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/Secure_Coding_Principles
https://www.owasp.org/index.php/Secure_Coding_Principles
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

Cws/8/2

B3 42 BT
[RSG-10] If the API detects invalid input values, it MUST returnthe HTTP status AJ, AX, AAJ, AAX
code “400 Bad Request’. The error payload MUST indicate the
erroneous value.
[RSG-12] If the API detects valid values that require features to not be AJ,AX, AAJ, AAX
implemented, it MUST returnthe HTTP status code “501 Not
Implemented’. The error payload MUST indicate the unhandled value.
[RSG-14] If a resource canbe stand-alone it MUST be a top-levelresource, or AJ, AX, AAJ, AAX
otherw isea sub-resource.
[RSG-15] Query parameters MUST be used instead of URL paths toretrieve AJ, AX,AAJ, AAX
nested resources.
[RSG-18] Resource names, segment and query parameters MUST be composed AJ, AX, AAJ, AAX
of w ordsin the English language, using the primary English spellings
provided in the Oxford English Dictionary. Resource names that are
localized due to business requirements MAY be in other languages.
[RSG-20] A Web APl MUST support content type negotiation follow ing IETF RFC AJ,AX, AAJ, AAX
7231.
[RSG-21] JSON format MUST be assumed w hen no specific contenttypeis AJ, AX,AAJ, AAX
requested.
[RSG-27] A Web APl MUST supportatleast XML or JSON. AJ, AX,AAJ, AAX
[RSG-28] HTTP Methods MUST be restricted to the HTTP standard methods AJ,AX, AAJ, AAX
POST, GET,PUT, DELETE, OPT IONS, PATCH, TRACE and HEAD, as
specified in [IETF RFC 7231 and 5789.
[RSG-33] For an end point w hich fetches a single resource, if aresource is not AJ, AX, AAJ, AAX
found, the method GET MUST return the status code “404 Not
Found”. Endpoints w hich retumn lists of resources will simply return an
empty list.
[RSG-34] If a resource is retrieved successfully, the GET method MUST return AJ,AX,AAJ, AAX
200 OK.
[RSG-35] A GET request MUST be idempotent. AJ, AX,AAJ, AAX
[RSG-37] A HEAD request MUST be idempotent. AJ, AX,AAJ, AAX
[RSG-39] A POST request MUST NOT be idempotent according to the IETF AJ, AX,AAJ AAX
RFC 2616.
[RSG-43] A PUT request MUST be idempotent. AJ,AX,AAJ, AAX
[RSG-44] If a resourceis not found, PUT MUST return the status code “404 Not | AJ,AX,AAJ,AAX
Found”.
[RSG-45] If a resource is updated successfully, PUT MUST return the status code | AJ,AX,AAJ, AAX
“200 OK”if the updated resourceis returnedor a“204 No Content’ff
it is not returned.
[RSG-46] A PATCH request MUST NOT be idempotent. AJ,AX,AAJ, AAX
[RSG-48] If a resource is not found PATCH MUST return the status code “404 AJ, AX,AAJ, AAX
Not Found”.
[RSG-50] A DELETErequest MUST NOT be idempotent. AJ,AX,AAJ, AAX
[RSG-51] If a resource is not found, DELETE MUST return the status code “404 AJ, AX,AAJ, AAX
Not Found”.
[RSG-52] If a resource is deleted successfully, DELETE MUST return the status AJ, AX, AAJ, AAX
“200 OK"if the deleted resource is returned or “204 No Content”if it
is not returned.
[RSG-53] The final recipient is either the origin server or the first proxy or gateway | AJ, AX, AAJ, AAX
to receive a Max-Forw ards value of zero inthe request. A TRACE
request MUST NOT include a body.
[RSG-54] A TRACE request MUST NOT be idempotent. AJ, AX,AAJ, AAX
[RSG-55] The value of the Via HTTP header field MUST act to track the request AJ,AX,AAJ, AAX
chain.
[RSG-56] The Max-Forw ards HTTP header field MUST be usedto allow theclient | AJ,AX, AAJ, AAX
to limit the length of the request chain.
[RSG-58] Responses to TRACE MUST NOT be cached. AJ, AX, AAJ, AAX
[RSG-60] AnOPTIONS request MUST be idempotent. AJ, AX,AAJ, AAX

[RSG-70]

A Web APl MUST use query parameters to implement pagination.

AJ,AX,AAJ, AAX

Cws/8/2

B 43 T

[RSG-71]

A Web APl MUST NOT use HTTP headers to implement pagination.

AJ, AX, AAJ, AAX

[RSG-75]

In order to specify a multi-attribute sorting criterion, a query parameter
MUST be used. The value of this parameter is a comma-separated list
of sortkeys and sort directions either ‘asc’ for ascending or ‘desc’for
descending MAY be appended to each sort key, separated by the colon
.’ character. The default direction MUST be specified by the serverin
case that a sortdirection is not specified for akey.

AJ, AX, AAJ, AAX

RSG-76]

A Web APl SHOULD return the sorting criteria in the response.

AJ, AX, AAJ, AAX

RSG-79]

A Web APl MUST supportreturning the number of items in a collection.

AJ, AX, AAJ, AAX

[RSG-80]

A query parameter MUST be used to support returning the number of
items in a collection.

AJ, AX, AAJ, AAX

[RSG-82]

A Web APl MAY support returning the number of items in a collection
inline, i.e. as the part of the response that contains the collection itself. A
guery parameter MUST be used.

AJ,AX,AAJ, AAX

RSG-86]

A Service Contract MUST specify the grammar supported (such as
fields, functions, keywords, and operators).

AJ, AX,AAJ, AAX

[RSG-87]

The query parameter “q” MUST be used.

AJ,AX,AAJ, AAX

[RSG-88]

On the protocollevel, a Web APl MUST return an appropriate HTTP
status code selected fromthe list of standard HTTP Status Codes.

AJ,AX,AAJ, AAX

[RSJ-89]

On the application level, a Web API MUST return a payload reporting
the error in adequate granularity. The code and message attributes are
mandatory, the details attribute is conditionally mandatory and target,
status, more Info, and i nternal Message attributes are optional.

AJ, AX,AAJ, AAX

RSG-90]

Errors MUST NOT expose security-critical data or internal technical
details, such as call stacks in the error messages.

AJ, AX, AAJ, AAX

[RSG-91]

The HTTP Header: Reason-Phrase (described in RFC 2616) MUST
NOT be usedto carry error messages.

AJ,AX,AAJ, AAX

[RSG-93]

A Service Contract format MUST include the follow ing:

— APl version;

— Information about the semantics of API
elements;

— Resources;

— Resource attributes;

— Query Parameters;

— Methods;

— Media types;

— Search grammar (if one is supported);

— HTTP Status Codes;

— HTTP Methods;

— Restrictions and distinctive features; and
— Security (if any).

AJ,AX, AAJ, AAX

RSG-95]

A REST API MUST provide API documentation as a Service Contract.

AJ, AX,AAJ, AAX

RSG-96]

A Web APl implementation deviating from this Standard MUST

be explicitly documented in the Service Contract. If a deviating rule is
not specified inthe Service Contract, it MUST be assumed that this
Standard is follow ed.

AJ, AX, AAJ, AAX

RSG-97]

A Service Contract MUST allow API client skeleton code generation.

AJ, AX,AAJ, AAX

RSG-105]

A Web APl MUST support caching of GET results; aWeb APl MAY
support caching of results fromother HTTP Methods.

AJ, AX,AAJ

[RSG-113]

IF a Web APT supports preference handling, the nomenclature of
preferencesthat MAY be set by using the Preferheader MUST be
recorded inthe Service Contract.

AAJ, AAX, AJ, AX

[RSG-114]

If a Web APl supports localized data, the request HTTP header
Accept-Language MUST be supported to indicate the set of natural
languages that are preferred in the response as specified in IETF RFC
7231.

AAJ, AAX,AJ, AX

[RSG-116]

Confidentiality: APis and API Information MUST be identified, classified,
and protected against unauthorized access, disclosure and
eavesdropping at all times. The least privilege, zero trust, need to know
and need to share principles MUST be follow ed.

AAJ, AAX, AJ, AX

[RSG-117]

Integrity-Assurance: APIs and API Information MUST be protected
against unauthorized modification, duplication, corruption and

AAJ, AAX, AJ, AX

Cws/8/2

A5 44 TR

destruction. Information MUST be modified through approved
transactions and interfaces. Systems MUST be updated using approved
configuration management, change management and patch
management processes.

[RSG-118]

Availability: APIs and API Information MUST be available to authorized
users atthe right time as defined in the Service Level Agreements
(SLAs), access-control policies and defined business processes.

AAJ, AAX, AJ, AX

[RSG-119]

Non-repudiation: Every transaction processed or action performed by
APIs MUST enforce non-repudiation through the implementation of
proper auditing, authorization, authentication, and the implementation of
secure paths and non-repudiation services and mechanisms.

AAJ, AAX,AJ, AX

[RSG-120]

Authentication, Authorization, Auditing: Users, systems, APIs or devices
involved in critical transactions or actions MUST be authenticated,
authorized using role-based or attribute based access-control services
and maintain segregation of duty. In addition, all actions MUST be
logged and the authentication’s strength mustincrease w ith the
associated information risk.

AAJ, AAX, AJ, AX

[RSG-121]

While developing APIs, threats, malicious use cases, securecoding
techniques, transport layer security and security testing MUST be
carefully considered, especially:

— PUTsandPOSTs—i.e.: w hich change to internal data
could potentially be used to attack or misinform;

— DELETES-i.e.: could be usedtoremove the contents of
an internal resource repository;

— Whitelist allow able methods- to ensure that allow able
HTTP Methods are properly restricted while others would
return a proper response code; and

— Well know n attacks should be considered during the
threat-modeling phase of the design process to ensure
that the threat risk does not increase. The threats and
mitigation defined w ithin OWASP Top Ten Cheat
Sheet MUST be taken into consideration.

AAJ, AAX, AJ, AX

[RSG-127]

While developing APIs, the standards and best practices listed below
SHOULD be follow ed:

— Secure coding best practices: OWASP Secure Coding
Principles;

— Rest APl security: REST Security Cheat Sheet;

— Escapeinputs and cross site scripting protection: OWASP
XSS Cheat Sheet;

— SQL Injection prevention: OWASP SQL Injection Cheat
Sheet, OWASP Parameterization Cheat Sheet; and

— Transportlayer security: OWASP Transport Layer
Protection Cheat Sheet.

AJ, AX, AAX, AAJ

[RSG-123]

Security testing and vulnerability assessment MUST be carried out to
ensure that APIs are secure and threat-resistant. This requirement MAY
be achieved by leveraging Static and Dynamic Application Security
Testing (SAST/DAST), automated vulnerability management tools and
penetration testing.

AJ, AX, AAJ, AAX

RSG-124]

Protected services MUST only provide HTTPS endpoints using TLS 1.2,
or higher, w ith a cipher suite that includes ECDHE for key exchange.

AJ,AX,AAJ, AAX

[RSG-130]

Anonymous authentication MUST only be used w hen the customers and
the application they are using accesses information or feature with a low
sensitivity level w hich should not require authentication, such as, public
information.

AJ, AX, AAJ, AAX

[RSG-131]

Username and password or password hash authentication MUST NOT
be allow ed.

AJ,AX,AAJ, AAX

[RSG-141]

APl Keys MUST be revoked if the client violates the usage agreement,
as specified by the IP Office.

AJ,AX,AAJ, AAX

[RSG-144]

Secure and trusted certificates MUST be issued by a mutually trusted
certificate authority (CA) through a trust establishment process or cross-
certification.

AJ, AX, AAJ, AAX

[RSG-145]

Certificates shared between the clientand the server SHOULD be used
to mitigate identity security risks particular to sensitive systems and
privileged actions, for example X.509.

AJ,AX,AAJ, AAX

[RSG-148]

If the REST API is public, the HTTP header Access-Control-Allow-Orign
MUST be setto *'.

AJ, AX,AAJ, AAX

https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/Secure_Coding_Principles
https://www.owasp.org/index.php/Secure_Coding_Principles
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

Table 3: Conformance Table Level AAJ

Cws/8/2

BEAF 5 45 T

Rule ID Rule Crossreference and remark
[RSG-01] The forward slashcharacter “/” MUST be usedin the path of the URI to AAJ, AAX, AX, Al
indicate a hierarchical relationship betw een resources but the path
MUST NOT end with aforward slash as it does not provide any
semantic value and may cause confusion.
RSG-02 Resources name MUST be consistent in their naming pattern. AAJ, AAX,AX, Al
RSG-03 Resource names SHOULD use low ercaseor kebab-case naming AAJ, AAX
conventions. Resourcesname MAY be abbreviated.
[RSG-05] Query parameters SHOULD use the low erCamelCase convention. AAJ, AAX
Query parameter MAY be abbreviated.
RSG-06 The URL patternfora Web API MUST containthe word “api”inthe URL. | AAJ, AAX, AX, AJ
RSG-07 Matrix parameters MUST NOT be used. AAJ, AAX, AX, A
RSG-08 A Web APl MUST consistently apply HTTP status codes as describedin | AAJ, AAX,AX,AJ
IETF RFCs
[RSG-09] The recommended codes in Annex V SHOULD be used by a Web API AAX,AAJ
to classify the error.
[RSG-10] If the API detects invalid input values, it MUST returnthe HTTP status AAJ, AAX, AX, A
code“400 Bad Request’. The error payload MUST indicate the
erroneous value.
[RSG-11] If the API detects syntactically correct argument names (in the request AAJ, AAX
or query parameters) that are not expected, it SHOULD ignore them.
[RSG-12] If the API detects valid values that require features to not be AAJ, AAX, AX, A
implemented, it MUST returnthe HTTP status code “501 Not
Implemented”. The error payload MUST indicate the unhandled value.
[RSG-13] A Web APl SHOULD only use top-levelresources. If there are sub- AAJ, AAX
resources, they should be collections and imply an association. An entity
should be accessible as either top-level resource or sub-resource but
not using both w ays.
[RSG-14] If a resource can be stand-alone it MUST be a top-levelresource, or AAJ, AAX, AX, A
otherw isea sub-resource.
[RSG-15] Query parameters MUST be used instead of URL paths to retrieve AAJ, AAX,AX,AJ
nested resources.
[RSG-16] Resource names SHOULD be nouns for CRUD Web APIs and verbs for | AAJ, AAX
Intent Web APIs.
[RSG-17] If resource nameis a noun it SHOULD alw ays use the plural form. AAJ, AAX
Irregular noun forms SHOULD NOT be used. For example, /persons
should be used instead of /people.
[RSG-18] Resource names, segment and query parameters MUST be composed | AAJ, AAX,AX, Al
of w ordsin the English language, using the primary English spellings
provided in the Oxford English Dictionary. Resource names that are
localized due to business requirements MAY be in other languages.
[RSG-19] A Web APl SHOULD use for content type negotiation the request HTTP | AAJ, AAX
header Acceptandtheresponse HTTP header Content-Type.
[RSG-20] A Web APl MUST support content type negotiation follow ing IETF RFC AAJ, AAX, AX,AJ
7231.
[RSG-21] JSON format MUST be assumed w hen no specific contenttype is AAJ, AAX,AX, Al
requested.
[RSG-22] A Web APl SHOULD returnthe status code “406 Not Acceptable”if | AAJ, AAX
a requested format is not supported.
[RSG-23] A Web APl SHOULD reject requests containing unexpected or missing AAJ, AAX
content type headers w ith the HTTP status code “406 Not
Acceptable”’or“415 Unsupported Media Type”.
[RSJ-25] JSON object property names SHOULD be provided in low erCamelCase, | AAJ
e.g., applicantName.
RSG-27 A Web APl MUST support atleast XML or JSON. AAJ, AAX,AX,AJ
RSG-28 HTTP Methods MUST be restricted to the HTTP standard methods AAJ, AAX, AX,AJ
POST, GET,PUT, DELETE, OPT IONS, PATCH, TRACE and HEAD, as
specified in [IETF RFC 7231 and 5789.
[RSG-29] HTTP Methods MAY follow the pick-and-choose principle, which states | AAJ, AAX
that only the functionality needed by the target usage scenario should
be implemented.
[RSG-30] Some proxies supportonly POST and GET methods. To overcomethese | AAJ, AAX

limitations, a Web APl MAY use a POST method w ith a customHTTP
header “tunneling” the real HTTP method. The customHTTP header X-
HTTP-Method SHOULD be used.

Cws/8/2

BEAF 5 46 1T

[RSG-31]

If a HTTP Method is not supported, the HTTP status code “405
Method Not Al lowed” SHOULD be returned.

AAJ, AAX

[RSG-32]

A Web APl SHOULD support batching operations (aka bulk operations)
in place of multiple individual requests to achieve latency reduction. The
same semantics should be used for HTTP Methods and HTTP status
codes. The response payload SHOULD contain information about all
batching operations. If multiple errors occur, the error payload SHOULD
contain information about all the occurrences (in the details attribute). All
bulk operations SHOULD be executed in an atomic operation.

AAJ, AAX

RSG-33]

For an end point w hich fetches a single resource, If aresource Is not
found, the method GET MUST return the status code “404 Not
Found”. Endpoints w hich retum lists of resources will simply return an
empty list.

AAJ, AAX, AX, A

[RSG-34]

If a resourceis retrieved successfully, the GET method MUST return
200 OK.

AAJ, AAX,AX,AJ

[RSG-35]

A GET request MUST be idempotent.

AAJ, AAX,AX,AJ

[RSG-36]

When the URI length exceeds the 255 bytes, the POST method
SHOULD be used instead of GET due to GET limitations, or else create
named queries if possible.

AAJ, AAX

RSG-37]

A HEAD request MUST be idempotent.

AAJ, AAX,AX, Al

RSG-39]

Some proxies support only POST and GET methods. A Web
API SHOULD supporta customHTTP request header to override the
HTTP Method in order to overcome these limitations.

AAJ, AAX

RSG-39]

A POST request MUST NOT be idempotent according to the IETF
RFC 2616.

AAJ, AAX, AX, A

RSG-40]

If the resource creation was successful, the HTTP header Location
SHOULD containa URI (absolute or relative) pointing to a created
resource.

AAJ, AAX

[RSG-41]

If the resource creation was successful, the response SHOULD contain
the status code “201 Created”.

AAJ, AAX

[RSG-42]

If the resource creation was successful, the response payload SHOULD
by default contain the body of the created resource, to allow the clientto
use it w ithout making an additional HTTP call.

AAJ, AAX

[RSG-43]

A PUT request MUST be idempotent.

AAJ, AAX, AX,AJ

[RSG-44]

If a resourceis not found, PUT MUST return the status code “404 Not
Found”.

AAJ, AAX,AX,AJ

[RSG-45]

If a resource is updated successfully, PUT MUST return the status code
“200 OK”if the updated resourceis returnedor a“204 No Content’ff
it is not returned.

AAJ, AAX,AX,AJ

[RSG-46]

A PATCH request MUST NOT be idempotent.

AAJ, AAX,AX,AJ

[RSG-47]

If a Web APl implements partial updates, idempotent characteristics of
PATCH SHOULD be taken into account. In order to make it idempotent
the APl MAY follow the IETF RFC 5789 suggestion of using optimistic
locking.

AAJ, AAX

RSG-48]

If a resourceis not found PATCH MUST return the status code “404
Not Found".

AAJ, AAX, AX, A

[RSJ-49]

If a Web APl implements partial updates using PATCH, it MUST use the
JSON Merge Patch format to describe the partial change set, as
described in IETF RFC 7386 (by using the contenttype

application/merge-patch+json).

AAJ,AJ

RSG-50]

A DELETErequest MUST NOT be idempotent.

AAJ, AAX, AX, A

[RSG-51]

If a resource is not found, DELETE MUST return the status code “404
Not Found".

AAJ, AAX,AX, Al

RSG-52]

If a resource is deleted successfully, DELETE MUST return the status
“200 OK” if the deleted resourceis returned or “204 No Content”if it
is notreturned.

AAJ, AAX,AX, Al

[RSG-53]

The final recipientis either the origin server or the first proxy or gateway

to receive a Max-Forw ards value of zero inthe request. A TRACE
request MUST NOT include a body.

AAJ, AAX,AX, Al

[RSG-54]

A TRACE request MUST NOT be idempotent.

AAJ, AAX,AX,AJ

[RSG-55]

The value of the Via HTTP header field MUST act to track the request
chain.

AAJ, AAX, AX, A

RSG-56]

The Max-Forw ards HTTP header field MUST be usedto allow the client
to limit the length of the request chain.

AAJ, AAX,AX, Al

[RSG-57]

I the requestis valid, the response SHOULD contain the entire request
message in the response body, with a Content-Type of "message/http".

AAJ, AAX

RSG-59]

Responses to TRACE MUST NOT be cached.

AAJ, AAX, AX,AJ

Cws/8/2

B2 47 DT

[RSG-59]

The status code “200 OK” SHOULD be returned to TRACE.

AAJ, AAX

[RSG-60]

An OPTIONS request MUST be idempotent.

AAJ, AAX, AX, A

RSG-61]

Custom HTTP headers starting w ith the “X-" prefix SHOULD NOT be
used.

AAJ, AAX

[RSG-62]

Custom HTTP headers SHOULD NOT be used to change the behavior
of HTTP Methods unless it is to resolve any existing technical limitations
(for example, see [RSG-39]).

AAJ, AAX

[RSG-63]

The naming convention for customHTTP headers is
<organization>-<header name>, where <organization>and
<header>SHOULD follow the kebab-case convention.

AAJ, AAX

[RSG-64]

A Web APl SHOULD supportasingle method of service versioning
using URI versioning, for example /api/v1/inventors or Header
versioning, for example Accept-version: v1 or Media type
versioning, for example Accept: application/vnd.vl+json.
Query string versioning SHOULD NOT be used.

AAJ, AAX

[RSG-65]

A versioning-numbering scheme SHOULD be follow ed considering only
the major version number (for example /v1).

AAJ, AAX

RSG-66]

APl service contracts MAY include endpoint redirection feature. When a
service consumer attempts to invoke a service, a redirection response
may be returned to tell the service consumer to resend the requestto a
new endpoint. Redirections MAY be temporary or permanent:

— Temporary redirect - using the HTTP response header
Location and the HTTP status code “302 Found” according
to IETF RFC 7231;or

— Permanent redirect - using the HTTP response header
Location and the HTTP status code “301 Moved Permanently”
accordingto IETF RFC 7238.

AAJ, AAX

RSG-67]

APl Tfecycle strategies SHOULD be published by the developers to
assistusers in understanding how long a version w ill be maintained.

AAJ, AAX

RSG-68]

A Web APl SHOULD support pagination.

AAJ, AAX

RSG-69

Paginated requests MAY NOT be idempotent.

AAJ, AAX

RSG-70

A Web APl MUST use query parameters to implement pagination.

AAJ, AAX, AX, Al

RSG-71

A Web APl MUST NOT use HTTP headers to implement pagination.

AAJ, AAX, AX, A

RSG-72

Query parameters 1 imit=<number of items to deliver> and
offset=<number of items to skip> SHOULD be used, w here
limit is the number of items to be returned (page size), and skip the
number of items to be skipped (offset). If no page size limit is specified,
a default SHOULD be defined - global or per collection; the default offset
MUST be zero “0”. For example, the follow ing is a valid URL:

https://w ipo.int/api/vl/patents?limit=10&o0ffset=20

AAJ, AAX

[RSG-73]

The limit and the offset parameter values SHOULD be included in the
response.

AAJ, AAX

RSG-74

A Web APl SHOULD support sorting.

AAJ, AAX

RSG-75

In order to specify a multi-attribute sorting criterion, a query parameter
MUST be used. The value of this parameter is a comma-separated list
of sortkeys and sort directions either ‘asc’for ascending or ‘desc’for
descending MAY be appended to each sort key, separated by the colon
" character. The default direction MUST be specified by the serverin
case that a sortdirection is not specified for akey.

AAJ, AAX,AX,AJ

RSG-76

A Web APl SHOULD return the sorting criteria in the response.

AAJ, AAX, AX, A

RSG-77

A Web APl MAY support expanding the body of returned content. The
query parameter expand=<comma-separated list of
attributes names>SHOULD be used.

AAJ, AAX

[RSG-78]

A query parameter SHOULD be used instead of URL paths in case that
a Web API supports projection following the format:
“fields="<comma-separated list of attribute names>.

AAJ, AAX

RSG-79

A Web APl MUST support returning the number of items in a collection.

AAJ, AAX, AX, A

RSG-80

A query parameter MUST be used to support returning the number of
items in a collection.

AAJ, AAX,AX,AJ

[RSG-81]

The query parameter count SHOULD be used to return the number of
items in a collection.

AAJ, AAX

https://wipo.int/api/v1/patents?limit=10&offset=20

Cws/8/2

BEAF5 48 T

[RSG-82]

A Web APl MAY support returning the number of items in a collection
inline, i.e. as the part of the response that contains the collection itself. A
query parameter MUST be used.

AAJ, AAX,AX,AJ

RSG-83]

The query parameter count=true SHOULD be used. If not specified,
count should be set by defaultto false.

AAJ, AAX

RSG-84]

I a Web APl supports pagination, it SHOULD supportreturning inline in
the response the number of the collection (i.e. the total number of items
of the collection).

AAJ, AAX

[RSG-85]

When a Web API supports complex search expressions, a query
language SHOULD be specified, suchas CQL.

AAJ, AAX

[RSG-86]

A Service Contract MUST specify the grammar supported (such as
fields, functions, keywords, and operators).

AAJ, AAX, AX,AJ

RSG-87

The query parameter “q” MUST be used.

AAJ, AAX, AX, Al

RSG-88

On the protocollevel, a Web API MUST return an appropriate HTTP
status code selected fromthe list of standard HTTP Status Codes.

AAJ, AAX, AX, A

[RSJ-89]

On the application level,a Web AP MUST return a payload reporting theerror
in adequate granularity. The code and message attributes are mandatory,
the detai Isattribute is conditionally mandatory and target, status,

more Info, and 1 nternal Message attributes are optional.

AAJ, AAX,AX,AJ

[RSG-90]

Errors MUST NOT expose security-critical data or internal technical
details, such as call stacks inthe error messages.

AAJ, AAX,AX,AJ

[RSG-91]

The HTTP Header: Reason-Phrase (described in RFC 2616) MUST
NOT be usedto carry error messages.

AAJ, AAX,AX, Al

[RSG-92]

Every logged error SHOULD have a unique Correlation ID. A custom
HTTP header SHOULD be used and SHOULD be named Correlation-
ID.

AAJ, AAX

[RSG-93]

A Service Contractformat MUST Include the follow ing:

— APl version;

— Information about the semantics of API elements;
— Resources;

— Resource attributes;

— Query Parameters;

— Methods;

— Media types;

— Search grammar (if one is supported);

— HTTP Status Codes;

— HTTP Methods;

— Restrictions and distinctive features; and
— Security (if any).

AAJ, AAX, AX, Al

[RSG-94]

Service Contract format SHOULD include requests and responses in
XML schema or JSON Schema and examples of the APl usage in the
supported formats, i.e., XML or JSON.

AAJ, AAX

RSG-95

A REST API MUST provide API documentation as a Service Contract.

AAJ, AAX, AX, Al

RSG-96

A Web APl implementation deviating from this Standard MUST

be explicitly documented in the Service Contract. If a deviating rule is
not specified in the Service Contract, it MUST be assumed that this
Standard is follow ed.

AAJ, AAX,AX,AJ

RSG-97

A Service Contract MUST allow API client skeleton code generation.

AAJ, AAX, AX,AJ

RSG-98

A Service Contract SHOULD allow serverskeleton code generation.

AAJ, AAX

RSG-99

A Web API documentation SHOULD be w ritten in RAML or OAS.
Custom documentation formats SHOULD NOT be used.

AAJ, AAX

[RSG-100]

A Web APl consumer SHOULD be able to specify a server timeout for
eachrequest; acustomHTTP header SHOULD be used. A maximum

server timeout SHOULD be also used to protect serverresources from
over-use.

AAJ, AAX

[RSG-101]

A'Web APl SHOULD support conditionally retrieving data, to ensure
only data w hich is modified w ill be retrieved. Content-based Resource
Validation SHOULD be used because itis more accurate.

AAJ, AAX

[RSG-102]

In order to implement Content-based Resource Validation the ETag
HTTP header SHOULD be used in the response to encode the data
state. Afterward, this value SHOULD be used in subsequent requests in
the conditional HTTP headers (such as If-Match or If-None-Match). If the
data has not been modified since the requestreturned the ETag, the
server SHOULD return the status code “304 Not Modi fied” (if not
modified). This mechanismis specified in IETF RFC 7231 and 7232.

AAJ, AAX

CwWs/8/2
BHARER 49 T

[RSG-103]

In order to implement Time-based Resource Validation the Last-
Modified HTTP header SHOULD be used. This mechanism s
specified in IETF RFC 7231 and 7232.

AAJ, AAX

[RSG-104]

Using response versioning, a service consumer MAY implement
Optimistic Locking.

AAJ, AAX

[RSG-105]

A Web APl MUST support caching of GET results; a Web APl MAY
support caching of results fromother HTTP Methods.

AAJ, AJ, AX

[RSG-106]

The HTTP response headers Cache-Control and Expires SHOULD
be used. The latter MAY be used to supportlegacy clients.

AAJ, AAX

[RSG-107]

A Web APl SHOULD advertise if it supports partial file dow nloads by
responding to HEAD requests and replying with the HTTP response
headers Accept-Rangesand Content-Length.

AAJ, AAX

[RSG-108]

A Web APl SHOULD support partial file dow nloads. Multi-part ranges
SHOULD be supported.

AAJ, AAX

RSG-109

A Web APl SHOULD advertise if it supports partial file uploads.

AAJ, AAX

RSG-110

A Web APl SHOULD support partial file uploaded. Multi-part ranges
SHOULD be supported.

AAJ, AAX

[RSG-111]

The service provider SHOULD return w ith HTTP response headers the
HTTP header“413 Request Entity Too Large”incasethe
request has exceeded the maximum allow ed limit. A customHTTP
header MAY be used to indicate the maximum size of the request.

AAJ, AAX

[RSG-112]

If a Web API supports preference handling, it SHOULD be implemented
accordingto IETF RFC 7240, i.e. the requestHTTP header Prefer
SHOULD be used and the response HTTP header Preference-
App 1 1ed SHOULD be returned (echoing the original request).

AAJ, AAX

[RSG-113]

IF a Web APT supports preference handling, the nomenclature of

preferencesthat MAY be set by using the Prefer header MUST be
recorded inthe Service Contract.

AAJ, AAX, AJ, AX

[RSG-114]

If a Web APl supports localized data, the request HTTP header
Accept-Language MUST be supported to indicate the set of natural
languages that are preferred in the response as specified in IETF RFC
7231.

AAJ, AAX,AJ, AX

[RSG-115]

If the API supports long-running operations, they SHOULD be
asynchronous. The following approach SHOULD be follow ed:

a. The service consumer activatesthe service operation;

b. The service operation returns the status code “202 Accepted”
according to IETF RFC 7231 (section 6.3.3), i.e. the request has
been accepted for processing but the processing has not been
completed. The location of the queued task that w as created is also
returned withthe HTTP header Location; and

c. The service consumer calls the returned Location to learn if the
resourceis available. If the resourceis not available, the response
SHOULD have the status code “200 OK”, contain the task status (for
example pending) and MAY contain other information (for example,
a link to cancel or delete the task using the DELETE HTTP method).
If the resource is available, the response SHOULD have the status
code “303 See Other”andthe HTTP header Location SHOULD
contain the URL to retrieve the taskresults.

AAJ, AAX

[RSG-116]

Confidentiality: APls and APl Information MUST be identified, classified,
and protected against unauthorized access, disclosure and
eavesdropping at all times. The least privilege, zero trust, need to know
and need to share principles MUST be follow ed.

AAJ, AAX, AJ, AX

[RSG-117]

Integrity-Assurance: APIs and APl Information MUST be protected
against unauthorized modification, duplication, corruption and
destruction. Information MUST be modified through approved
transactions and interfaces. Systems MUST be updated using approved
configuration management, change management and patch
management processes.

AAJ, AAX, AJ, AX

[RSG-119]

Availability: APis and APl Information MUST be available to authorized
users atthe right time as defined in the Service Level Agreements
(SLAs), access-control policies and defined business processes.

AAJ, AAX, AJ, AX

[RSG-119]

Non-repudiation: Every transaction processed or action performed by
APIs MUST enforce non-repudiation through the implementation of
proper auditing, authorization, authentication, and the implementation of
secure paths and non-repudiation services and mechanisms.

AAJ, AAX, AJ, AX

CWS/8/2
M EEE 50 1T

[RSG-120]

Authentication, Authorization, Auditing: Users, systems, APIs or devices
involved in critical transactions or actions MUST be authenticated,
authorized using role-based or attribute based access-control services
and maintain segregation of duty. In addition, all actions MUST be
logged and the authentication’s strength mustincrease w ith the
associated information risk.

AAJ, AAX,AJ, AX

[RSG-121]

While developing APIs, threats, malicious use cases, securecoding
techniques, transport layer security and security testing MUST be
carefully considered, especially:

— PUTsandPOSTs-i.e.:which change to internal data
could potentially be usedto attack or misinform;

— DELETES-i.e.: could be usedtoremove the contents of
an internal resource repository;

— Whitelist allow able methods- to ensure that allow able
HTTP Methods are properly restricted while others would
return a proper response code; and

— Well know n attacks should be considered during the
threat-modeling phase of the design process to ensure
that the threat risk does not increase. The threats and
mitigation defined w ithin OWASP Top Ten Cheat
Sheet MUST be takeninto consideration.

AAJ, AAX, AJ, AX

[RSG-122]

While developing APIs, the standards and best practices listed below
SHOULD be follow ed:

— Secure coding best practices: OWASP Secure Coding
Principles;

— Rest API security: REST Security Cheat Sheet;

— Escapeinputs and cross site scripting protection: OWASP
XSS Cheat Sheet;

— SQL Injection prevention: OWASP SQL Injection Cheat
Sheet, OWASP Parameterization Cheat Sheet; and

— Transportlayer security: OWASP Transport Layer
Protection Cheat Sheet.

AAJ, AAX, AJ, AX

RSG-123]

Security testing and vulnerability assessment MUST be carried out to
ensure that APIs are secure and threat-resistant. This requirement MAY
be achieved by leveraging Static and Dynamic Application Security
Testing (SAST/DAST), automated vulnerability management tools and
penetration testing.

AAJ, AAX, AJ, AX

[RSG-124]

Protected services MUST only provide HTTPS endpoints using TLS 1.2,
or higher, w ith a cipher suite that includes ECDHE for key exchange.

AAJ, AAX, AJ, AX

[RSG-125]

When considering authentication protocols, perfect forward secrecy
SHOULD be usedto provide transport security. The use of insecure
cryptographic algorithms and backwards compatibility to SSL 3 and TLS
1.0/1.1 SHOULD NOT be allow ed.

AAX,AAJ

[RSG-126]

For maximum security and trust, a site-to-site IPSEC VPN SHOULD be
established to further protect the information transmitted over insecure
netw orks.

AAX, AAJ

[RSG-127]

The consuming application SHOULD validate the TLS certificate chain
w hen making requests to protected resources, including checking the
certificate revocation list.

AAX,AAJ

[RSG-128]

Protected services SHOULD only use valid certificates issued by a
trusted certificate authority (CA).

AAX,AAJ

[RSG-129]

Tokens SHOULD be signed using secure signing algorithms that are
compliant w ith the digital signature standard (DSS) FIPS —186-4. The
RSA digital signature algorithm or the ECDSA algorithm SHOULD be
considered.

AAX, AAJ

[RSG-130]

Anonymous authentication MUST only be used w hen the customers and
the application they are using accesses information or feature with a low
sensitivity level w hich should not require authentication, such as, public
information.

AAJ, AAX, AJ, AX

[RSG-131]

Username and password or password hash authentication MUST NOT
be allow ed.

AAJ, AAX, AJ, AX

[RSG-137]

If a serviceis protected, Open ID Connect SHOULD be used.

AAX,AAJ

https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/Secure_Coding_Principles
https://www.owasp.org/index.php/Secure_Coding_Principles
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

CwWs/8/2
BPEER 51 11T

[RSG-133]

Where a JSON Web Token (JWT) is used, a JWT secret SHOULD
possess high entropy to increase the w ork factor of a brute force attack;
token TTL and RTTL SHOULD be as short as possible; and sensitive
information SHOULD NOT be stored in the JWT payload.

AAX,AAJ

RSG-134]

In POST/PUT requests, sensitive data SHOULD be transferred in the
request body or by request headers.

AAX,AAJ

[RSG-135]

In GET requests, sensitive data SHOULD be transferred inan HTTP
Header.

AAX,AAJ

[RSG-136]

In order to mnimize latency and reduce coupling betw een
protected services, the access control decision SHOULD be taken
locally by REST endpoints.

AAX, AAJ

[RSG-137]

API Keys SHOULD be used for protected and public services to prevent
overwhelming their service provider with multiple requests (denial-of-
service attacks). For protected services APIKeys MAY be used for
monetization (purchased plans), usage policy enforcement (QoS) and
monitoring.

AAX,AAJ

[RSG-139]

APl Keys MAY be combined w ith the HTTP request header user-agent
to discern between a human user and a software agent as specified in
IETF RFC 7231.

AAX, AAJ

[RSG-139]

The service provider SHOULD return along w ith HTTP response
headers the current usage status. The follow ing response data MAY be
returned:

— ratelimit - ratelimit (per minute) as setin the system;

— ratelimit remaining - remaining amount of requests
allow ed during the current time slot (-1 indicates that the
limit has been exceeded); and

— ratelimit reset-time (in seconds) remaining until the
request counter will be reset.

AAX,AAJ

[RSG-140]

The service provider SHOULD return the status code “429 Too Many
Requests” if requests are coming in too quickly.

AAX,AAJ

[RSG-141]

API' Keys MUST be revoked if the client violates the usage agreement,
as specified by the IP Office..

AAJ, AAX, AJ, AX

[RSG-147]

API Keys SHOULD be transferred using customHTTP headers. They
SHOULD NOT be transferred using query parameters.

AAX, AAJ

[RSG-143]

APl Keys SHOULD be randomly generated.

AAX,AAJ

RSG-144]

Secure and trusted certificates MUST be issued by a mutually trusted
certificate authority (CA) through a trust establishment process or cross-
certification.

AAJ, AAX, AJ, AX

[RSG-145]

Certificates shared between the client and the server SHOULD be used
to mitigate identity security risks particular to sensitive systems and
privileged actions, for example X.509.

AAJ, AAX,AJ, AX

[RSG-146]

For highly privileged services, two-way mutual authentication betw een
the client and the server SHOULD use certificates to provide additional
protection.

AAX, AAJ

[RSG-147]

Multi-factor authentication SHOULD be implemented to mitigate identity
risks for application w ith a high-risk profile, a systemprocessing very
sensitive information or a privileged action.

AAX, AAJ

RSG-148]

If the REST APl is public, the HTTP header Access-Control-Allow-Orighn
MUST be setto *'.

AAJ, AAX, AJ, AX

[RSG-149]

If the REST APIis protected, CORS SHOULD be used, if possible. Ese,
JSONP MAY be used as fallback but only for GET requests, for
example, w henthe user is accessing using an old brow ser. iframe
SHOULD NOT be used.

AAX,AAJ

[RSJ-150]

If using instances described a schema, the Link header SHOULD be
usedto provide alink to a dow nloadable JSON schema ACCORDING
TO RFC8288.

AAJ

[RSJ-151]

A Web APl SHOULD implement at leastLevel 2 (Transport Native
Properties) of RMM. Level 3 (Hypermedia) MAY be implemented to
make the APl completely discoverable.

AAJ

[RSJ-152]

For designing a customhypermedia format the follow ing set of attributes
SHOULD be used enclosed into an attribute link:

— href-thetarget UR];
— rel —the meaning of the target URI;
— self-the URI referencesthe resource itself;

AAJ

CwWs/8/2
BYPEER 52 11T

next —the URI referencesthe previous page (if used
during pagination);

previous —the URI referencesthe next page (if used
during pagination); and

arbitrary name v denotes the custommeaning of a
relation.

Table 4: Conformance Level AAX

CWS/8/2
MEEE 53 1T

Rule ID Rule Crossreference
and remark
[RSG-01] The forward slashcharacter “/” MUST be used in the path of the URI to indicatea | AAJ, AAX
hierarchical relationship betw een resources but the path MUST NOT endwitha
forwardslash as it does not provide any semantic value and may cause confusion.
RSG-02 Resources name MUST be consistent in their naming pattern. AAJ, AAX, AJ, AX
RSG-03 Resource names SHOULD use low ercaseor kebab-case naming conventions. AAJ, AAX
Resources name MAY be abbreviated.
[RSG-05] Query parameters SHOULD use the low erCamelCase convention. Query AAJ, AAX
parameter MAY be abbreviated.
[RSG-06] The URL patternfora Web API MUST contain the w ord “apr” inthe URI. AAJ, AAX,AX,AJ
[RSG-07] Matrix parameters MUST NOT be used. AAJ, AAX,AX,AJ
[RSG-08] A Web APl MUST consistently apply HTTP status codes as described in [ETF AAJ, AAX;AX;AJ
RFCs
[RSG-09] The recommended codes in Annex V SHOULD be used by a Web API toclassify | AAX, AAJ
the error.
[RSG-10] If the API detects invalid input values, it MUST returnthe HTTP status code “400 AAJ, AAX,AX,AJ
Bad Request’. The error payload MUST indicate the erroneous value.
[RSG-11] If the API detects syntactically correct argument names (in the request or query AAJ, AAX
parameters) that are not expected, it SHOULD ignore them.
[RSG-12] If the API detects valid values that require features to not be implemented, it AAJ, AAX,AX,AJ
MUST returnthe HTTP status code “501 Not Implemented’. The error payload
MUST indicate the unhandled value.
[RSG-13] A Web APl SHOULD only use top-levelresources. If there are sub-resources, they | AAJ, AAX
should be collections and imply an association. An entity should be accessible as
either top-level resource or sub-resource but not using both w ays.
[RSG-14] If a resource can be stand-alone it MUST be a top-levelresource, or otherwise a AAJ, AAX,AX,AJ
sub-resource.
[RSG-15] Query parameters MUST be used instead of URL paths to retrieve nested AAJ, AAX, AX, Al
resources.
[RSG-16] Resource names SHOULD be nouns for CRUD Web APIs and verbs for Intent AAJ, AAX
Web APIs.
[RSG-17] If resource name is a noun it SHOULD alw ays use the pluralform. Irregular noun AAJ, AAX
forms SHOULD NOT be used. For example, /persons should be used instead of
/people.
[RSG-18] Resource names, segment and query parameters MUST be composed of words in | AAJ, AAX, AX,AJ
the English language, using the primary English spellings provided in the Oxford
English Dictionary. Resource names that are localized due to business
requirements MAY be in other languages.
[RSG-19] A Web APl SHOULD use for content type negotiation the requestHTTP header AAJ, AAX
Acceptandtheresponse HTTP header Content-Type.
RSG-20 A Web APl MUST support content type negotiation follow ing IETF RFC 7231. AAJ, AAX, AX,AJ
RSG-21 JSON format MUST be assumed w hen no specific content type is requested. AAJ, AAX,AX,AJ
RSG-22 A Web APl SHOULD returnthe status code “406 Not Acceptable’ifa AAJ, AAX
requested format is not supported.
[RSG-23] A Web APl SHOULD reject requests containing unexpected or missing content AAJ, AAX
type headers with the HTTP status code “406 Not Acceptable”or“415
Unsupported Media Type”.
[RSX-24] The requests and responses (naming convention, message format, data structure, | AAX
and data dictionary) SHOULD refer to WIPO Standard ST.96.
[RSX-26] XML components SHOULD be provided in UpperCamelCase in line w ith WIPO AAX
Standard ST.96.
[RSG-27] A Web API MUST support atleast XML or JSON. AAJ, AAX, AX,AJ
[RSG-28] HTTP Methods MUST be restricted tothe HTTP standard methods POST, GET, AAJ, AAX,AX,AJ
PUT,DELETE, OPTIONS, PATCH, TRACE and HEAD, as specified in IETF RFC 7231
and 5789.
[RSG-29] HTTP Methods MAY follow the pick-and-choose principle, which states that only AAJ, AAX
the functionality needed by the target usage scenario should be implemented.
[RSG-30] Some proxies supportonly POST and GET methods. To overcome these AAJ, AAX

limitations, a Web APl MAY use a POST method w ith a customHTTP header
“tunneling” the real HTTP method. The customHTTP header X-HTTP-Method
SHOULD be used.

Cws/8/2

B 55 54 1T
[RSG-31] If a HTTP Method is not supported, the HTTP status code “405 Method Not AAJ, AAX
Al lowed” SHOULD be returned.
[RSG-32] A Web API SHOULD support batching operations (aka bulk operations) in place of | AAJ, AAX
multiple individual requests to achieve latency reduction. The same semantics
should be used for HTTP Methods and HTTP status codes. The response payload
SHOULD contain information about all batching operations. If multiple errors
occur, the error payload SHOULD contain information about all the occurrences (in
the details attribute). All bulk operations SHOULD be executed in an atomic
operation.
[RSG-33] For an end point w hich fetches a single resource, if aresource is not found, the AAJ, AAX,AX, Al
method GET MUST return the status code “404 Not Found”. Endpoints w hich
return lists of resourceswill simply return an empty list.
[RSG-34] If a resource is retrieved successfully, the GET method MUST return 200 OK. AAJ, AAX,AX,AJ
[RSG-35] A GET request MUST be idempotent. AAJ, AAX, AX,AJ
[RSG-36] When the URI length exceeds the 255 bytes, the POST method SHOULD beused | AAJ,AAX
instead of GET due to GET limitations, or else create named queries if possible.
[RSG-37] A HEAD request MUST be idempotent. AAJ, AAX AX,AJ
[RSG-38] Some proxies supportonly POST and GET methods. A Web API SHOULD support | AAJ, AAX
a customHTTP request header to override the HTTP Method in order to overcome
these limitations.
[RSG-39] A POST request MUST NOT be idempotent according to the IETF RFC 2616. AAJ, AAX,AX,AJ
[RSG-40] If the resource creation was successful, the HTTP header Location SHOULD AAJ, AAX
contain a URI (absolute or relative) pointing to a created resource.
[RSG-41] If the resource creation was successful, the response SHOULD contain the status | AAJ, AAX
code“201 Created”.
[RSG-42] If the resource creation was successful, the response payload SHOULD by default | AAJ, AAX
contain the body of the created resource, to allow the clientto use it without
making an additional HTTP call.
[RSG-43] A PUT request MUST be idempotent. AAJ, AAX,AX,AJ
[RSG-44] If a resourceis notfound, PUT MUST return the status code “404 Not Found”. AAJ, AAX,AX, Al
[RSG-45] If a resource is updated successfully, PUT MUST return the status code “200 OK” | AAJ,AAX,AX AJ
if the updated resourceis returned or a“204 No Content”if itis not returned.
[RSG-46] A PATCH request MUST NOT be idempotent. AAJ, AAX,AX,AJ
[RSG-47] If a Web API implements partial updates, idempotent characteristics of PATCH AAJ, AAX
SHOULD be taken into account. In order to make it idempotent the APl MAY folow
the IETF RFC 5789 suggestion of using optimistic locking.
[RSG-48] If a resourceis notfound, PATCH MUST return the status code “404 Not AAJ, AAX, AX,AJ
Found”.
[RSG-50] A DELETErequest MUST NOT be idempotent. AAJ, AAX, AX,AJ
[RSG-51] If a resourceis notfound, DELETE MUST return the status code “404 Not AAJ, AAX, AX A
Found”.
[RSG-52] If a resource is deleted successfully, DELETE MUST return the status “200 OK”if | AAJ,AAX,AX,AJ
the deleted resourceis returned or “204 No Content’if itis not returned.
[RSG-53] The final recipient s either the origin server or the first proxy or gatewaytoreceive | AAJ, AAX, AX, AJ
a Max-Forw ards value of zero inthe request. A TRACE request MUST NOT include
a body.
[RSG-54] A TRACE request MUST NOT be idempotent. AAJ, AAX,AX,AJ
[RSG-55] The value of the Via HTTP header field MUST act to track the request chain. AAJ, AAX, AX,AJ
[RSG-56] The Max-Forw ards HTTP header field MUST be usedto allow the client to limit the | AAJ, AAX, AX, AJ
length of the request chain.
[RSG-57] If the requestis valid, the response SHOULD contain the entire request message AAJ, AAX
in the response body, with a Content-Type of "message/http".
[RSG-58] Responses to TRACE MUST NOT be cached. AAJ, AAX,AX,AJ
[RSG-59] The status code “200 OK” SHOULD be returned to TRACE. AAJ, AAX
[RSG-60] AnOPTIONS request MUST be idempotent. AAJ, AAX,AX,AJ
RSG-61 Custom HTTP headers starting w ith the “X-" prefix SHOULD NOT be used. AAJ, AAX
RSG-62 Custom HTTP headers SHOULD NOT be used to change the behavior of HTTP AAJ, AAX
Methods unless it is to resolve any existing technical limitations (for example, see
[RSG-39)).
[RSG-63] The naming convention for customHTTP headers is <organization>-<header | AAJ, AAX
name>, where <organization>and <header> SHOULD follow the kebab-case
convention.
[RSG-64] A Web APl SHOULD supportasingle method of service versioning using URI AAJ, AAX

versioning, for example /api/v1/inventors or Header versioning, for example
Accept-version: v1 or Media type versioning, for example Accept:
application/vnd.v1l+json. Query string versioning SHOULD NOT be used.

Cws/8/2

B35 55 1T
[RSG-65] A versioning-numbering scheme SHOULD be follow ed considering only the major | AAJ, AAX
version number (for example /v1).
[RSG-66] API service contracts MAY include endpoint redirection feature. When a service AAJ, AAX
consumer attempts to invoke a service, aredirection response may be returned to
tell the service consumer to resend the requestto a new endpoint. Redirections
MAY be temporary or permanent:
— Temporary redirect - using the HTTP response header Location and the
HTTP status code “302 Found” according to IETF RFC 7231; or
— Permanent redirect - using the HTTP response header Location and the
HTTP status code “301 Moved Permanently” according to [IETF RFC
7238.
[RSG-67] API lifecycle strategies SHOULD be published by the developers to assistusersin | AAJ, AAX
understanding how long a version w ill be maintained
[RSG-68] A Web APl SHOULD support pagination. AAJ, AAX
RSG-69 Paginated requests MAY NOT be idempotent. AAJ, AAX
RSG-70 A Web APl MUST use query parameters to implement pagination. AAJ, AAX, AX,AJ
RSG-71 A Web APl MUST NOT use HTTP headers to implement pagination. AAJ, AAX,AX,AJ
RSG-72 Query parameters 1 imit=<number of items to deliver>and AAJ, AAX
offset=<number of items to skip>SHOULD be used, w here limit is the
number of items to be returned (page size), and skip the number of items to be
skipped (offset). If no page size limit is specified, a default SHOULD be defined -
global or per collection; the default offset MUST be zero “0”. For example, the
follow ing is avalid URL:
https://w ipo.int/api/vl/patents?limit=10&offset=20
RSG-73 The limit and the offset parameter values SHOULD be included in the response. AAJ, AAX
RSG-74 A Web APl SHOULD support sorting. AAJ, AAX
RSG-75 In order to specify a multi-attribute sorting criterion, a query parameter MUST be AAJ, AAX,AX,AJ
used. The value of this parameter is a comma-separated list of sort keys and sort
directions either ‘asc’for ascending or ‘desc’ for descending MAY be appended to
each sortkey, separated by the colon “’ character. The default direction MUST be
specified by the server in case that a sort direction is not specified for a key.
RSG-76 A Web APl SHOULD return the sorting criteria in the response. AAJ, AAX,AX,AJ
RSG-77 A Web APl MAY support expanding the body of returned content. The query AAJ, AAX
parameter expand=<comma-separated list of attributes names>
SHOULD be used.
[RSG-78] A query parameter SHOULD be used instead of URL paths in case thata Web APl | AAJ, AAX
supports projection following the format: “Fiel ds="<comma-separated list
ofattribute names>.
RSG-79 A Web APl MUST support returning the number of items in a collection. AAJ, AAX,AX,AJ
RSG-80 A query parameter MUST be used to support returning the number of items in a AAJ, AAX,AX,AJ
collection.
[RSG-81] The query parameter count SHOULD be used to return the number of items in a AAJ, AAX
collection.
[RSG-82] A Web APl MAY support returning the number of items in a collectioninline, i.e. as | AAJ, AAX, AX, AJ
the part of the response that contains the collectionitself. A query parameter
MUST be used.
[RSG-83] The query parameter count=true SHOULD be used. If not specified, count AAJ, AAX
should be set by defaultto false.
[RSG-84] If a Web API supports pagination, it SHOULD support returning inline in the AAJ, AAX
response the number of the collection (i.e. the total number of items of the
collection).
[RSG-85] When a Web API supports complex search expressions, a query language AAJ, AAX
SHOULD be specified, such as CQL.
[RSG-86] A Service Contract MUST specify the grammar supported (such as fields, AAJ, AAX,AX,AJ
functions, keywords, and operators).
RSG-87 The query parameter “q” MUST be used. AAJ, AAX, AX, Al
RSG-88 On the protocollevel, a Web API MUST return an appropriate HTTP status code AAJ, AAX,AX,AJ
selected fromthe list of standard HTTP Status Codes.
[RSJ-89] On the application level, a Web API MUST return a payload reporting the error in AAJ, AAX;AX AT

adequate granularity. The code and message attributes are mandatory, the
detai Is attribute is conditionally mandatory and target, status, more Info,
and internalMessage attributes are optional.

https://wipo.int/api/v1/patents?limit=10&offset=20

CWS/8/2
M EEE 56 1T

[RSG-90]

Errors MUST NOT expose security-critical data or internal technical details, such
as call stacks inthe error messages.

AAJ, AAX,AX,AJ

[RSG-91]

The HTTP Header: Reason-Phrase (describedin RFC 2616) MUST NOT be
used to carry error messages.

AAJ, AAX,AX,AJ

[RSG-92]

Every logged error SHOULD have a unique Correlation ID. A customHTTP
header SHOULD be used and SHOULD be named Correlation-ID.

AAJ, AAX

[RSG-93]

A Service Contract format MUST include the follow ing:

— APl version;

— Information about the semantics of API elements;
— Resources;

— Resource attributes;

— Query Parameters;

— Methods;

— Media types;

— Search grammar (if one is supported);

— HTTP Status Codes;

— HTTP Methods;

— Restrictions and distinctive features; and
— Security (if any).

AAJ, AAX,AX,AJ

[RSG-94]

Service Contract format SHOULD include requests and responses in XML schema
or JSON Schema and examples of the APl usage in the supported formats, i.e.,
XML or JSON.

AAJ, AAX

RSG-95

A REST API MUST provide APl documentation as a Service Contract.

AAJ, AAX,AX,AJ

RSG-96

A Web APl implementation deviating from this Standard MUST be explicitly
documented in the Service Contract. If a deviating rule is not specified in the
Service Contract, it MUST be assumed that this Standard is follow ed.

AAJ, AAX,AX,AJ

RSG-97

A Service Contract MUST allow API client skeleton code generation.

AAJ, AAX, AX,AJ

RSG-98

A Service Contract SHOULD allow serverskeleton code generation.

AAJ, AAX

RSG-99

A Web API documentation SHOULD be w ritten in RAML or OAS. Custom
documentation formats SHOULD NOT be used.

AAJ, AAX

[RSG-100]

A Web API consumer SHOULD be able to specify a server timeout for each
request; acustomHTTP header SHOULD be used. A maximum server timeout
SHOULD be also used to protect server resources fromover-use.

AAJ, AAX

[RSG-101]

A Web APl SHOULD support conditionally retrieving data, to ensure only data
w hich is modified w ill be retrieved. Content-based Resource Validation SHOULD
be used becauseitis more accurate.

AAJ, AAX

RSG-102]

In order to implement Content-based Resource Validation the ETag HTTP header
SHOULD be used in the response to encode the data state. Afterward, this value
SHOULD be used in subsequent requests in the conditional HTTP headers (such
as If-Match or If-None-Match). If the data has not been modified since the request
returned the ETag, the server SHOULD return the status code “304 Not
Modified” (if not modified). This mechanismis specified in IETF RFC 7231 and
7232.

AAJ, AAX

[RSG-103]

In order to implement Time-based Resource Validation the Last-Modi fied
HTTP header SHOULD be used. This mechanismis specified in IETF RFC 7231
and 7232.

AAJ, AAX

[RSG-104]

Using response versioning, a service consumer MAY implement Optimistic
Locking.

AAJ, AAX

[RSG-106]

The HTTP response headers Cache-Control and Expires SHOULD be used.
The latter MAY be used to support legacy clients.

AAJ, AAX

[RSG-107]

A Web APl SHOULD advertise if it supports partial file dow nloads by responding to
HEAD requests and replying w ith the HTTP response headers Accept-Ranges
and Content-Length.

AAJ, AAX

[RSG-108]

A Web APl SHOULD support partial file dow nloads. Multi-part ranges SHOULD be
supported.

AAJ, AAX

RSG-109

A Web APl SHOULD advertise if it supports partial file uploads.

AAJ, AAX

RSG-110

A Web APl SHOULD support partial file uploaded. Multi-part ranges SHOULD be
supported.

AAJ, AAX

[RSG-111]

The service provider SHOULD returnw ith HTTP response headers the HTTP
header “413 Request Entity Too Large”incase the request has exceeded
the maximum allow ed limit. A customHTTP header MAY be usedto indicate the
maximum size of the request.

AAJ, AAX

CwWs/8/2
BYPEER 57 1T

[RSG-112]

If a Web API supports preference handling, it SHOULD be implemented according
to [ETF RFC 7240, i.e. the request HTTP header Prefer SHOULD be used and
the response HTTP header Preference-Appl ied SHOULD be returned
(echoing the original request).

AAJ, AAX

[RSG-113]

If a Web APl supports preference handling, the nomenclature of preferencesthat
MAY be setby using the Prefer header MUST be recorded in the Service
Contract.

AAJ, AAX, AJ, AX

[RSG-114]

If a Web API supports localized data, the request HTTP header Accept-

Language MUST be supported to indicate the set of naturallanguages that are
preferred in the response as specified in IETF RFC 7231.

AAJ, AAX, AJ, AX

[RSG-115]

If the API supports long-running operations, they SHOULD be asynchronous. The
follow ing approach SHOULD be follow ed:

a. The service consumer activatesthe service operation;

b. The service operation returns the status code “202 Accepted” according to
[ETF RFC 7231 (section 6.3.3), i.e. the request has been accepted for
processing but the processing has not been completed. The location of the
queued task that was created is also returned with the HTTP header
Location;and

c. The service consumer calls the returned Location to learnif the resource is
available. If the resource is not available, the response SHOULD have the
status code “200 OK”, contain the task status (for example pending) and MAY
contain other information (for example, alink to cancel or delete the task using
the DELETEHTTP method). If the resource is available, the response SHOULD
have the status code “303 See Other” and the HTTP header Location
SHOULD containthe URL to retrieve the task results.

AAJ, AAX

[RSG-116]

Confidentiality: APls and APT Information MUST be identified, classified, and
protected against unauthorized access, disclosure and eavesdropping at all times.
The least privilege, zero trust, need to know and need to share principles MUST
be follow ed.

AAJ, AAX, AJ, AX

[RSG-117]

Integrity-Assurance: APIs and API Information MUST be protected against
unauthorized modification, duplication, corruption and destruction. Information
MUST be modified through approved transactions and interfaces. Systems MUST
be updated using approved configuration management, change management and
patch management processes.

AAJ, AAX,AJ, AX

[RSG-119]

Availability: APls and APl Information MUST be available to authorized users at
the righttime as defined in the Service Level Agreements (SLAS), access-control
policies and defined business processes.

AAJ, AAX, AJ, AX

[RSG-119]

Non-repudiation: Every transaction processed or action performed by APIs MUST
enforce non-repudiation through the implementation of proper auditing,
authorization, authentication, and the implementation of secure paths and non-
repudiation services and mechanisms.

AAJ, AAX,AJ, AX

[RSG-120]

Authentication, Authorization, Auditing: Users, systems, APIs or devices involved
in critical transactions or actions MUST be authenticated, authorized using role-
based or attribute based access-control services and maintain segregation of duty.
In addition, all actions MUST be logged and the authentication’s strength must
increase w ith the associated information risk.

AAJ, AAX, AJ, AX

[RSG-121]

While developing APIs, threats, malicious use cases, securecoding techniques,
transport layer security and security testing MUST be carefully considered,
especially:

— PUTsandPOSTs-i.e.: w hich change to internal data could
potentially be used to attack or misinform;

— DELETES —i.e.: could be used to remove the contents of an internal
resource repository;

— Whitelist allow able methods- to ensure that allow able HTTP
Methods are properly restricted while others would return a proper
response code; and

— Well know n attacks should be considered during the threat-
modeling phase of the design process to ensure that the threat risk
does not increase. The threats and mitigation defined w ithin
OWASP Top Ten Cheat Sheet MUST be taken into consideration.

AAJ, AAX,AJ, AX

[RSG-127]

While developing APIs, the standards and best practices listed below SHOULD be
follow ed:

— Secure coding best practices: OWASP Secure Coding Principles;

AAJ, AAX, AJ, AX

https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/Secure_Coding_Principles

CWS/8/2
EEE 58 1T

— Rest APl security: REST Security Cheat Sheet;

— Escapeinputs and cross site scripting protection: OWASP XSS
Cheat Sheet;

— SQL Injection prevention: OWASP SQL Injection Cheat Sheet,
OWASP Parameterization Cheat Sheet; and

— Transportlayer security: OWASP Transport Layer Protection Cheat
Sheet.

[RSG-123]

Security testing and vulnerability assessment MUST be carried outto ensure that
APIs are secure and threat-resistant. This requirement MAY be achieved by
leveraging Static and Dynamic Application Security Testing (SAST/DAST),
automated vulnerability management tools and penetration testing.

AAJ, AAX, AJ, AX

[RSG-124]

Protected services MUST only provide HTTPS endpoints using TLS 1.2, or higher,
w ith a cipher suite that includes ECDHE for key exchange.

AAJ, AAX, AJ, AX

[RSG-125]

When considering authentication protocols, perfect forward secrecy SHOULD be
used to provide transport security. The use of insecure cryptographic algorithms
and backw ards compatibility to SSL 3 and TLS 1.0/1.1 SHOULD NOT be allow ed.

AAX,AAJ

[RSG-126]

For maximum security and trust, a site-to-site IPSEC VPN SHOULD be
established to further protect the information transmitted over insecure networks.

AAX, AAJ

[RSG-127]

The consuming application SHOULD validate the TLS certificate chain w hen
making requests to protected resources, including checking the certificate
revocation list.

AAX,AAJ

[RSG-128]

Protected services SHOULD only use valid certificates issued by a trusted
certificate authority (CA).

AAX, AAJ

[RSG-129]

Tokens SHOULD be signed using secure signing algorithms that are compliant
w ith the digital signature standard (DSS) FIPS —186-4. The RSA digital signature
algorithm or the ECDSA algorithm SHOULD be considered.

AAX,AAJ

RSG-130]

Anonymous authentication MUST only be used w hen the customers and the
application they are using accesses information or feature with a low sensitivity
level w hich should not require authentication, such as, public information.

AAJ, AAX,AJ, AX

[RSG-131]

Username and password or password hash authentication MUST NOT be allow ed.

AAJ, AAX, AJ, AX

RSG-132

If a serviceis protected, Open ID Connect SHOULD be used.

AAX,AAJ

RSG-133

Where a JSON Web Token (JWT) is used, a JWT secret SHOULD possess high
entropy to increase the w ork factor of a brute forceattack; token TTL and RTTL
SHOULD be as short as possible; and sensitive information SHOULD NOT be
stored in the JWT payload.

AAX,AAJ

[RSG-134]

In POST/PUT requests, sensitive data SHOULD be transferred in the request body
or by request headers.

AAX,AAJ

[RSG-135]

In GET requests, sensitive data SHOULD be transferred inan HTTP Header.

AAX, AAJ

[RSG-136]

In order to minimize Tatency and reduce coupling betw een protected services, the
access control decision SHOULD be taken locally by REST endpoints.

AAX,AAJ

[RSG-137]

API' Keys SHOULD be usedfor protected and public services to prevent
overw helming their service provider with multiple requests (denial-of-service
attacks). For protected services APIKeys MAY be used for monetization
(purchased plans), usage policy enforcement (QoS) and monitoring.

AAX,AAJ

[RSG-138]

APl Keys MAY be combined w ith the HTTP request header user-agentto discern
betw een a human user and a software agent as specified in [IETF RFC 7231.

AAX,AAJ

[RSG-139]

The service provider SHOULD return along w ith HTTP response headers the
current usage status. The follow ing responsedata MAY be returned:

— ratelimit - rate limit (per minute) as setin the system;

— ratelimit remaining - remaining amount of requests allow ed during
the currenttime slot (-1 indicates that the limit has been exceeded);
and

— ratelimit reset- time (in seconds) remaining until the request
counter w ill be reset.

AAX,AAJ

[RSG-140]

The service provider SHOULD return the status code “429 Too Many
Requests” if requests are coming in too quickly.

AAX,AAJ

[RSG-141]

API' Keys MUST be revoked if the client violates the usage agreement, as
specified by the IP Office..

AAJ, AAX,AJ, AX

[RSG-147]

API Keys SHOULD be transferred using customHTTP headers. They SHOULD
NOT be transferred using query parameters.

AAX, AAJ

RSG-143

APl Keys SHOULD be randomly generated.

AAX, AAJ

RSG-144

Secure and trusted certificates MUST be issued by a mutually trusted certificate
authority (CA) through a trust establishment process or cross-certification.

AAJ, AAX,AJ, AX

https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

CWS/8/2
MEEE 59 1T

[RSG-145] Certificates shared between the client and the server SHOULD be used to mitigate [AAJ, AAX, AJ, AX
identity security risks particular to sensitive systems and privileged actions, for
example X.509.

[RSG-146] For highly privileged services, two-way mutual authentication betw een the client AAX;AAJ
and the server SHOULD use certificates to provide additional protection.

[RSG-147] Multi-factor authentication SHOULD be implemented to mitigate identity risks for AAX,AAJ
application w ith a high-risk profile, a systemprocessing very sensitive information
or a privileged action.

[RSG-148] If the REST API is public, the HTTP header Access-Control-Allow-Origin MUST be | AAJ, AAX, AJ, AX
setto *.

[RSG-149] If the REST APl is protected, CORS SHOULD be used, if possible. Else, JISONP AAX,AAJ

MAY be used as fallback but only for GET requests, for example, w hen the user is
accessing using an old brow ser. lframe SHOULD NOT be used.

[Annex Il of ST.XX follow s]

ANNEXII

CWS/8/2
M EEE 60 TT

REST IP Vocabulary

Final Draft

Proposal by the API Task Force for considerationat the CWS/8

1. The follow ing IP VVocabulary is provided in Table 5 as examples of /basic RESTful Service Request parameters. IP
Offices willlikely encounter the need to develop more complex requests and varied response payloads according to their
business needs. The parameters in this table are examples of ST.96 elements in low erCamelCase, used for a JSON
response. The complete ST.96 IP data dictionary and IP XML Schemas can be accessed fromthis location:

https://www wipo.int/standards/en/st96/v4-0/.

[Editorial Note: The API Task Force will be providing in a future revisionalink to amore comprehensive list of REST IP
ST.96 and JSON vocabulary which will be dynamically maintained on an ongoing basis as IP elements and vocabulary
continue to evolve. |

Table 5: Example APIBusiness Vocabulary in lowerCamelCase following ST.96 XSDs

Business Resource Description
Dom ain(s) Nam e(s) Param eter Name
ALL /trademarks st13ApplicationNumber The application number for the filed IP, using WIPO ST.13
/patents formatw hichis a string of several values including the national
/designs application number, IP Type, and the country/organization.
ALL [trademarks applicationNumber The application number for the filed IP in the format of the
/patents national office.
/designs
MULTIPLE /trademarks internationalRegistrationNumber The International Registration Number of the IP right.
/designs For Trademarks this pertains to the Madrid System
For Industrial Designs, this pertains to the Hague system.
ALL /trademarks Single document entry relevantto the search criteria provided
/patents availableDocument to DocList API
/designs
ALL /trademarks Sorting Criterion used by the DocList API
/patents sortingCriteria
/designs
ALL /trademarks The IP Office, in WIPO _ST.2 format.
/patents receivingOfficeCode
/designs
ALL /trademarks The date received atthe IP Office
/patents receivingOfficeDate
/designs
Trademarks | /trademarks registrationDate The date registered at the IP Office
applicationDate The date of the application
markCurrentStatusCode Code of the current legal status of the application
markCurrentStatusDate Date of the currentlegal status of the application
Patents /patents filingDate The date that the application w as filed

grantPublicationDate

The date that the grantw as published

fileReferenceldentifier

Applicants reference number

https://www.wipo.int/standards/en/st96/v4-0/
https://www.wipo.int/export/sites/www/standards/en/pdf/03-13-01.pdf
https://www.wipo.int/export/sites/www/standards/en/pdf/03-02-01.pdf

CwWs/8/2
BPEER 61 11T

applicationBody Status

Status of the application body

Data associated w ith a legal status eventin relation to a

statusBventData specific patent application
A code indicating a broad, high level eventthat covers the
keyBventCode most general and important situations in a category
Industrial /designs applicationDate The date that the application w as filed
Designs
designApplicationCurrentStatus Category of current legal status of the design application
designApplicationCurrentStatusDate | Date of the currentlegal status of the design application
2. The follow ing technical query parameters defined in Table 6 should apply to all the REST API services:

Table 6: API Technical Vocabulary

Parameter | Constraint Format
Sgrea%/::ir: Value Description Design Rule
Data Type
type/subtype;
. parameter=value Used for content-type negotiation
format string f HTTP thead [RSG-19]
according to RFC7231, (prefera request header)
3.1.1.1. Media Type
V% w here % is a positive Used for service versioning (prefer
% string integer indicating version as path segment [RSG-64]
of the URL)
o ; positive limit=10 ; P
limit integer The page size used for pagination [RSG-73]
offset integer positive; offset=5 The offsetused for pagination [RSG-73]
defaultis O
Possible sort=keyl:asc, key2:desc
comma- values:
separated . . . N [RSG-74] -
sort list of _ asc Multi-attribute sorting criterion [RSG-76]
strings - desc
comma- expand=keyl ,key2
separated Used for expanding the body of the :
expand list of returned content [RSG-77]
strings
Default is count=true Returns the number of items in a
count boolean false collection (may be inline) [RSG-81]
apiKey=abcdef12345 o
apike strin Used to indicate a Web APl Key (a | [RSG-137] — [RSG-
piKey 9 HTTP header should be preferred) 138]

[Annex Il of ST.XX follow s]

Cws/8/2

B 62 T
ANNEX I
RESTFUL WEB API GUIDELINES AND MODEL SERVICE CONTRACT
Final Draft
Proposal by the API Task Force for considerationat the CWS/8
1. Annex lll provides tw o0 example models of Standard-compliant API specifications which intend to provide guidance to

Intellectual Property Offices (IPOs) w hich wish to develop web services according to this Standard. Details regarding tw o
example models are provided below and Appendixes A and B.

2. It should be noted that the example models w ere producedusing a hybrid-approach of contract-first and code-first
approaches.

DoclList Example Model

3. The first of the example models w as inspired by the IP5'° Office Open Portal Dossier (OPD) set of w eb services,
provided w ith the same name. The DocList API provides alist of relevant patent documents associated w ith at least an
application or publication number.

Patent Legal Status Example Model

4. The second of the example models is the patentlegal status APl w hich provides either the history of legal status
events for a particular application number or else the details of a particular legal status event.

[Appendices A and Bto Annex Il of ST.XX follow s]

19 The IP5 Officesare comprised of Chinese National Intellectual Property Administration (CNIPA), European Patent Office (EPO),
Japan Patent Office (JPO), Korean Intellectual Property Office (KIPO) andthe United StatesPatent and Trademark Office (USPTO).

Cws/8/2

P55 63 1T
APPENDIX A
DOCLIST EXAMPLE MODEL

1. Appendix A provides alink to a zip file w hich includes the requirements document w hichoutlines the requestand
response formats, the Y AML specification and the XSD components.
2. Appendix A is available at:
https://wwwwipo.int/edocs/mdocs/cws/en/cws_8/cws_ 8 2-appendixa.zip

APPENDIX B

PATENT LEGAL STATUS EXAMPLE MODEL

1. Appendix B provides alink to zip file provided here include the APl specification provided in RAML, example data

and WIPO Standard ST.96 enumeration lists.

2. Appendix Bis available at:
https://www.wipo.int/edocs/mdocs/cws/en/cws_8/cws 8 2-appendixb.zip

[Annex IV of ST.XX follow s]

https://www.wipo.int/edocs/mdocs/cws/en/cws_8/cws_8_2-appendixa.zip
https://www.wipo.int/edocs/mdocs/cws/en/cws_8/cws_8_2-appendixb.zip

Cws/8/2

B 64 1T
ANNEX IV
HIGH LEVEL SECURITY ARCHITECTURE BEST PRACTICES
Final Draft
Proposal by the API Task Force for considerationat the CW S/8
1. The security architecture defines the services and mechanisms that should be implemented to enforce defined

policies and rules w hile also providing a framework to further standardize and automate security. The core services and
mechanisms of this APl Security Framew ork (the development portal, APl manager and APl gatew ay) provide a grouping of
functionality. These functions can be delivered by discrete applications, bespoke code development, via COTS products or
through leveraging existing technologies that can be configured to provide these functions / services. Some of the
functionality may overlap or be combined into one or more products depending on the vendor used.

Trusted PKI/ Ext 1 CA @ Cross-certification or Trust relationship >
Tuste: emal CA [R -srrscnsnnniasncnnssnsnnnnnnssssssssnsssssssnnsnnsnnsnnsd
ﬁreateo”\ that consume AP Trusted PKI/ Intemal CA

mi

] g | E =
2 al 12 7
= 9 |5 ®
g H £
= 3 PR PN -]
<f» a VWY WS .
c:_-nls_uming Publish AP| Developer m
:pp "I:at'm application that portal
N consumeAPls Internal APls
sy D
Identity Federation service Consuming h % Publish |
Anpcies ¥ - UseAPls @
- AF| Developer ™ m
2 partal
8 APFlmanager Create APls Internal
g z | | Application
Public Mabile j]'jpubnsh | L= APImanager A
device k4 |
Access APls - m
) AP Gateway Y : = APl Gatewsy —ENESE
8 Using | 9. I : T, 3
Partners Brawser : Y Backend
e ‘?,a/‘\ Server
W Pl i Queryand
— [0] i transformation [
1P Offices /@& i L
H I:IPA N Frontend H [
| oap N Server i s
|
v o= o | Tl s
& Security
| —. : 9 |
. = i) |
Identity Store =y Store E =y Store Identity Store
v y : APl monitoring, analytics and policy definition - |
T T T
External - DMz Internal
TPSEC Site-to-Site VPH
E2ETL51.2 Encryption EZETLS1.2 Encryption E2ETLSL.2 Encryption
2. The recommended security architecture SHOULD have the follow ing APIsecurity services and mechanisms:

— A Web API portalto provide functions such as APldiscovery, APlanalytics, accessto specifications and
descriptionincluding SLAs, social netw orkand FAQs;

— A Web API manager to provide centralized APl administration and governance for API catalogues,
management of registration and on-boarding of various APl developer communities, APl lifecycle
management, application of pre-defined security profiles, and security policies lifecycle management;

— A Web API gatew ay to provide security automation capabilities including but not limited to centralized threat
protections, centralized APlauthentication, authorization, logging, security policy enforcement, message
encryption, monitoring, and analytics;

— A Web API monitoring and analytics service to provide functions such as advanced APl services monitoring,
analytics, profile usage for security baselines, changes of usage and demand;

— Acredential store to provide capabilities to securely store APIkeys, secrets, certificates, etc.;

— Atrusted Certificate Authority (CA) to issue secure certificates and enable trust establishment betw een the
various Offices;

— A Security Information and Event Management system (SIEM) to enable security logs correlation and
advanced security analytics and monitoring;

CWS/8/2
MEEE 65 1T

— Anldentity Provider to manage the identities stored in the LDAP directories and enable authentication; and
— A Web application scanning product that performs regular security scans and performs analysis based on a
trusted security baseline such as OWASPTop 10.

[Annex V of ST.XX follow s]

Cws/8/2

P55 66 1T
ANNEXYV
HTTP STATUS CODES
Final Draft
Proposal by the API Task Force for considerationat the CWS/8
1. It is important to align responses around the appropriate HTTP status code and to follow the standard HTTP codes.

In addition to an appropriate status code, there should be a usefuland concise description of the error in the body of your
HTTP response. Responsesshould be specific and clear so consumers can come to a conclusion very quickly when using
the APIL.

2. The setof HTTP status codes is defined on the basis of in REC7231. The status codes listed below should be used
by an API, w here applicable.

3. The follow ing response status code categories are defined:

— 1xx:Informational - Communicates transfer protocolHevelinformation;

— 2xX:Success - Indicates that the client's request w as accepted successfully;

— 3xx: Redirection - Indicates that the client must take some additional action in order to complete their request;
— 4xx:Client Error - This category of error status codes points the finger at clients; and

— 5xx: Server Error - The server takes responsibility for these error status codes.

4, The follow ing table consolidates the HTTP Status Codes and provides references to the relative [IETF RFCs.
Value Description Reference

100 Continue [RFC7231, Section 6.2.1]
101 Sw itching Protocols [RFC7231, Section 6.2.2]
102 Processing [RFC2518]
103 Early Hints [RFC8297]

104-199 Unassigned
200 OK [RFC7231, Section 6.3.1]
201 Created [RFC7231, Section 6.3.2]
202 Accepted [RFC7231, Section 6.3.3]
203 Non-Authoritative Information [RFC7231, Section 6.3.4]
204 No Content [RFC7231, Section 6.3.5]
205 Reset Content [RFC7231, Section 6.3.6]
206 Partial Content [RFC7233, Section 4.1]
207 Multi-Status [RFC4918]
208 Already Reported [RFC5842]

209-225 Unassigned
226 IM Used [RFC3229]

227-299 Unassigned
300 Multiple Choices [RFC7231, Section 6.4.1]
301 Moved Permanently [RFC7231, Section 6.4.2]
302 Found [RFC7231, Section 6.4.3]
303 See Other [RFC7231, Section 6.4.4]
304 Not Modified [RFC7232, Section 4.1]
305 Use Proxy [RFC7231, Section 6.4.5]

http://www.iana.org/go/rfc7231

CwWs/8/2
BYPEER 67 11T

306 (Unused) [RFC7231, Section 6.4.6]
307 Temporary Redirect [RFC7231, Section 6.4.7]
308 Permanent Redirect [RFC7538]

309-399 Unassigned
400 Bad Request [RFC7231, Section 6.5.1]
401 Unauthorized [RFC7235, Section 3.1]
402 Payment Required [RFC7231, Section 6.5.2]
403 Forbidden [RFC7231, Section 6.5.3]
404 Not Found [RFC7231, Section 6.5.4]
405 Method Not Allow ed [RFC7231, Section 6.5.5]
406 Not Acceptable [RFC7231, Section 6.5.6]
407 Proxy Authentication Required [RFC7235, Section 3.2]
408 Request Timeout [RFC7231, Section 6.5.7]
409 Conflict [RFC7231, Section 6.5.8]
410 Gone [RFC7231, Section 6.5.9]
411 Length Required [RFC7231, Section 6.5.10]
412 Precondition Failed [RFC7232, Section 4.2][RFC8144, Section 3.2]
413 Payload Too Large [RFC7231, Section 6.5.11]
414 URI Too Long [RFC7231, Section 6.5.12]
415 Unsupported Media Type [RFC7231, Section 6.5.13][RFC7694, Section 3]
416 Range Not Satisfiable [RFC7233, Section 4.4]
417 Expectation Failed [RFC7231, Section 6.5.14]

418-420 Unassigned
421 Misdirected Request [RFC7540, Section 9.1.2]
422 Unprocessable Entity [RFC4918]
423 Locked [RFC4918]
424 Failed Dependency [RFC4918]
425 Unassigned
426 Upgrade Required [RFC7231, Section 6.5.15]
427 Unassigned
428 Precondition Required [RFC6585]
429 Too Many Requests [RFC6585]
430 Unassigned
431 Request Header Fields Too Large [RFC6585]

432-450 Unassigned
451 Unavailable For Legal Reasons [RFC7725]

452-499 Unassigned
500 Internal Server Error [RFC7231, Section 6.6.1]
501 Not Implemented [RFC7231, Section 6.6.2]
502 Bad Gatew ay [RFC7231, Section 6.6.3]
503 Service Unavailable [RFC7231, Section 6.6.4]
504 Gatew ay Timeout [RFC7231, Section 6.6.5]
505 HTTP Version Not Supported [RFC7231, Section 6.6.6]
506 Variant Also Negotiates [RFC2295]
507 Insufficient Storage [RFC4918]

CWS/8/2
MHEEE 68 TT

508 Loop Detected [RFC5842]

509 Unassigned

510 Not Extended [RFC2774]

511 Netw ork Authentication Required [RFC6585]
512-599 Unassigned

[Annex Viof ST.XX follow s]

ANNEXVI

REPRESENTATIONAL TERMS

Final Draft

CWS/8/2
M EEE 69 TT

Proposal by the API Task Force for considerationat the CWS/8

Term

Definition

Data Type

Amount

A monetary value.

Number

Category

A specifically defined division or subset in a systemof classification in
w hich allitems share the same concept of taxonomy.

String

Code

A combination of one or more numbers, letters, or special characters,
w hich is substituted fora specific meaning. Represents finite,
predetermined values or free format.

String

Date

The notion of a specific pointintime, expressed by year, month, and day.

String

Directory

Alw ays preceded by PATH

String

Document

A CLOB stands for "Character Large OBject,” which is a specific data
type for almost all databases. Quite simply, a CLOB is a pointer to text
stored outside of the table in a dedicated block. Used for XML
documents. Comprised of textual information of International Trademark
Registration being exchanged. XML tags identify the data items
concerned with suchinformation. TIS - Madrid developmentteam may
define the attribute XML_DOC as CLOB, pointer to Tagged Data stored
outside of the table in a dedicated block.

String

Identifier

A combination of one or more integers, letters, special characters which
uniquely identifies a specific instance of a business object, but which
may not have a readily definable meaning.

String

Indicator

A signal of the presence, absence, or requirement of something.
Recommended values are Y, N, and, “?” if needed.

Boolean

Measure

A measureis a numeric value determined by measuring an object along
w ith the specified unit of measure. MeasureType is usedto representa
kind of physical dimension such as temperature, length, speed, w idth,

w eight, volume, latitude of an object. More precisely, MeasureType
should be used to measure intrinsic or physical properties of an object
seenas a w hole.

Number

Name

The designation of an object expressedina w ord or phrase.

String

Number

A string of numeral or alphanumeric characters expressing label, value,
quantity or identification.

Number, String

Percent

A number w hich represents a part of aw hole, which will be divided
by 100.

Number

CWS/8/2
MEEE 70 T2

Term

Definition

Data Type

Quantity

A quantity is a counted number of non-monetary units, possibly including
fractions. Quantityis usedto representacounted number of things.
Quantity should be used for simple properties of an object seenas a
composite or collection or container to quantify or count its components.
Quantity should alw ays express a counted number of things, and the
property willbe such as total, shipped, loaded, stored. QuantityType
should be used for components that require unit information; and
xsd:nonNegativeInteger should be used for countable components
w hich do not need unit information.

Number

Rate

A guantity or amount measured in relation to another quantity or amount.

Number

Text

Anunformatted character string, generally in the formof w ords.
(includes: Abbreviation, Comments.)

String

Time

A designation of a specified chronological point w ithin a period.

Date

DateTime

The captured date and time of aneventw henitoccurs.

Date

URI

The Uniform Resource Identifier that identifies w here the file is located.

String

[Annex VIl of ST.XX follow s]

CwWs/8/2
BYPEER 71 31T

ANNEXVII

API lifecycle management publication
Final Draft

Proposal by the API Task Force for considerationat the CWS/8

1. This Annex provides a brief overview of APILifecycle management and suggests key pieces of information that
should be published in a policy document by an IP Office to assist APl consumers in understanding how bestto use these
APis.

2. API Lifecycle managementis a critical aspect of an API strategy as it provides the framew ork for the life of an API
fromcreation through to retirement. It is useful both internally for the developers and operations teams and also externally
for APl consumers. For internal developers, it helps create a structure and set expectations for developing an AP, and for
the operations teams it assists w ith the understanding of support requirements. For APl consumers, both internally and
externally, it provides an informal contract of expectations for when a particular APl is used. This willbecome clear as each
stagein the lifecycleis presented below.

3. Published API lifecycles can be comprised of simple 4-step processes or more complex w ith up to 10 or more steps.
How ever forthe most part, the lifecycles with more steps are considered more detailed versions of the lifecycles with fewer
steps. As such, this document w illfocus on the basic 4-step process necessary to capture an APl lifecycle: Created ->
Published ->Deprecated -> Retired. Any published API lifecycle document should incorporate at least a description of these
four stages are managed by an IP Office.

Created

Retired API Published

Lifecycle

Deprecated

Created

4. Creating an APl focuses on designing, implementing and documenting the API. The critical consideration during the
creation phase is to consider the purpose of the APl and the overall structure necessary to ‘future-proof' the APl as much as
possible. Ideally, the API should adhere to a set of internal and external standards, such those recommendations
incorporated inthe current Standard. If the API is to be monetised then consideration should be given at this stage to define
the monetisation strategy.

Published

5. Once an APl is created it needs to be published. It should be versioned using a standard versioning strategy and
documentation should be provided including the API specification and sample requests and responses (see[RSG-64]-[RSG-
65]). Once published, the API is consumed by applications. Note that fixes and enhancements may be incorporated during
the Publish stage.

Cws/8/2

B3 72 0T
Deprecated
6. Atsome point an APl is no longer useful. It has either been superseded by a new erversion of an APl or is the no

longer relevant, because of some external or internal factor. APl Consumers should be contacted and preparation made to
remove the APl fromthe catalogue. Atthis stageit is likely to only major bugs w ith the APl w ill be fixed.

Retired

7. This is the stage w here the APl is decommissioned. This should include disabling access to the APl and removing it
fromAPI platform. Consideration should be given as to w hether “extended support”will be offered or if there are any cases
in w hich retirement w ould be delayed.

8. The last tw o stages are the mostimportant to documentin terms of the lifecycle management, the deprecation and
retirement stages. It is critical for APl consumers to understand the expectations placed on them w hen they startto use an
API to avoid disappointment or challenges w hentrying to remove an APl fromthe catalogue. This should include, for
example, management of major and minor versions and any timelines for notification of changes. Atahigh level, there
tends to be tw o approaches to APldeprecation/retirement: either retaining a previously stated number of versions, or
retaining old versions for a specified time period. A combination of these approaches can also be used but either the
number of older versions w hich are to be supported or the length of time that old versions are retained must be clearly
stated in the published lifecycle document.

[End of Annex VIl and of ST.XX]

[P A T]

	cws_8_2_069924_ZH
	导　言
	拟议的新产权组织标准
	目　标
	范　围
	改进标准草案

	试点实施
	进一步的开发和推广活动

	cws_8_2_annex_058791_ZH
	WIPO STANDARD ST.XX
	INTRODUCTION
	DEFINITIONS AND TERMINOLOGY
	Notations
	General notations
	Rule identifiers

	SCOPE
	WEB API DESIGN PRINCIPLES
	RESTFUL WEB API
	URI Components
	Status Codes
	Pick-and-choose Principle
	Resource Model
	Supporting multiple formats
	HTTP Methods
	GET
	HEAD
	POST
	PUT
	PATCH
	DELETE
	TRACE
	OPTIONS

	Data Query Patterns
	Pagination Options
	Sorting
	Expansion
	Projection
	Number of Items
	Complex Search Expressions

	Error Handling
	Error Payload
	Correlation ID

	Service Contract
	Time-out
	State Management
	Response Versioning
	Caching
	Managed File Transfer

	Preference Handling
	Translation
	Long-Running Operations
	Security Model
	General Rules
	Guidelines for secure and threat-resistant API management
	Encryption, Integrity and non-repudiation
	Authentication and Authorization
	Availability and threat protection
	Cross-domain Requests

	API Maturity Model

	SOAP WEB API
	General Rules
	Schemas
	Naming and Versioning
	Web Service Contract Design
	Attaching Policies to WSDL Definitions
	SOAP – Web Service Security

	Data Type Formats
	CONFORMANCE
	REFERENCES
	WIPO Standards
	Standards and Conventions
	IP Offices’ REST APIs
	Industry REST APIs and Design Guidelines
	Others

	ANNEX I
	ANNEX II
	ANNEX III
	DocList Example Model
	Patent Legal Status Example Model

	Appendix A
	Appendix B
	ANNEX IV
	ANNEX V
	ANNEX VI
	ANNEX VII
	Created
	Published
	Deprecated
	Retired

