= R

=
WIPO

BCEMWPHAAR OPTAHW3ALINA
NHTENNEKTYAINNbHOWM
COBCTBEHHOCTHU

CWS/8/2
OPUIMHAN: AHI IUMCKUNA
DATA: 20 OKTABEPS 2020 I

KomuteT no crangaptam BOUC (KCB)

Bocbmas ceccusn
XeHeBa, 30 HOAOpsA — 4 pekabpsa 2020 r.

NPEANOXEHME O HOBOM CTAHOAPTE BOMC B OTHOLWEHWWN API ANA BEB-
CEPBNCOB

LokymeHm nnodzomoesneH MexxdyHapoOHbim 610po

BBEAEHWE

1. Ha cBoen natom ceccuu, coctosiBuencs 29 mas — 2 nions 2017 r., KomuteT no
crangaptam BOUC (KCB) npusHan ogHUM 13 BaXKHbIX HanpaeneHui cTaHgapTusaumum
yHudukaumio Be6-cepmncos (CM. NyHKT 2 AokymeHta CWS/5/15). Ha aton ceccun KCB npuHsan
cornacoBaHHOe pelleHune O nocTaHoBKe 3agayqn Ne 56, B cooTBETCTBUM C KOoTOopon Llenesas
rpynna no XML gns MNC morna 6bl paspabaTtbiBaTb NPOEKT TAKOro ctaHgapTa (CM. NyHKT 92
nokymeHta CWS/5/22).

2. Ha cBoew wecTtom ceccun, coctosBliencs B oktsiope 2018 r., KCB npuHsn pelueHne

O TOM, YTO NPOEKT CTaHAapTa AOMKeH BKMoyaTb B cebsa cneundukaumio nHtepderica
nporpammMupoBaHusa npunoxeHnn (API) ona aByx TUNOBbLIX MOAenen: nepsas n3 HUX bbina
cosgaHa Ha 6ase ogHoro un3 yetbipex APl EguHoro noptana goctyna k gocee (OPD),
pa3paboTaHHbIX BegoMcTBamm rpynnbl IP5Y, a BTopasi npeactaBnsieT cobon Beb-cepBuc ans
cbopa nHopmarmm o cobbITUSIX, CBA3AHHbBIX C NPABOBLIM CTaTyCOM NaTEHTOB,
cooTBeTCTBYOWMIA TpeboBaHmsam ctaHgapta BOUC ST.27.

3. B xope cosewwanus Lleneson rpynnel no XML ans NC, coctosiBwerocst B mapte 2019 .
B Ceyne, Pecnybnuka Kopes, Lilenesas rpynna no XML ans NC npuHana peleHne o ToM, 4To
paspaboTka HOBOro ctaHgapTa B OTHoweHun API BbIXOAMT 32 pamMKu ee KOMNEeTEHLUMU U
npeanoxuna co3gaTtb HOBYIO LiENeByto rpynny angd o6o6uwennsa metonoB paspaboTku API

B chepe uHTennekTyanbHon cobetBeHHocTn (UC).

1 B cocTae rpynnbl BegomcTs IP5 BxogsaT EBponeiickoe nateHTHoe BegomcTteo (EMNB), BeaomcTBo no
nateHTam v ToBapHbeiM 3Hakam CLUA (BMT3 CLWA), HaunoHanbHoe ynpaBrneHme NHTeNNeKTyansHon
cobctBeHHocTM KuTtas (CNIPA), AnoHckoe naTeHTHOE BegomMcTBO (AlNB) n Kopelickoe BeaomMcTBO
WHTENNEeKTyanbHonm cobcTBeHHOCTU (KBUC)

CWS/8/2
cTp. 2

4. Ha cBoewn cegbmoni ceccun, coctosilierics B uone 2019 r., KCB pewwnn nopyuntb
BbINosiHeHMeE 3aga4ym Ne 56 HOBOW LieneBow rpynne, co3gaHHon Ang opraHmsaunm paspaboTkm
3TOro HoBoro ctangapta: Lienesow rpynne no API (cM. nyHKT 51 gokymeHta CWS/7/29).

B cBsasu c atnm KCB Takke yTBEpANn crnefytoliee HoBoe onncaHue 3agadun Ne 56 (cm. nyHkT 50
nokymeHta CWS/7/29).

«lMogroToBnTbL pekomeHgaumm nNo Bonpocam obmeHa gaHHbiMu, obecnedmnsaroLLero
MEeXMaLUMHHYIO nepefavy AaHHbIX, YAenMB OCHOBHOE BHMMaHMeE: (i) co3gaHuto
ycrnosun anga paspaboTtkm Beb-cepBucoB, paboTatowmx ¢ pecypcamu UC;

(i) nogroToBKE ONEpPaLMOHHOIO CNoBaps U COOTBETCTBYIOLLNX CTPYKTYP AaHHbIX;
(iii) paspaboTke NpaBW MMEHOBaHNSI PECYPCOB ANst YHUULNPOBAHHOIO
naeHtTndgukatopa pecypcos (URI); u (iv) AOKYMEHTMPOBAHMIO NPAKTUYECKMX
nNpMMepoB BHeApEeHNS Be6-CepBUCOB».

5. Ha cBoen cegbmon ceccum KCB paccmoTpen pabouunii NpoekT cTaHaapTa B OTHOLLEHUN
API, npegctaeneHHbin Lieneson rpynnon no API, n oTMeTUN cnegytoLlime nyHKTbl Kak
Tpebytowme gopaboTkm Npu NOAroTOBKE OKOHYATENBHOrO NpoekTa (CM. NyHKTbl 11-15
nokymeHta CWS/7/4):

— MCNONb30BaHME Ha NPOTSXXEHMM BCEro OCHOBHOMO TEKCTa CTaHgapTa NpuMepoB
otBeToB API Beb-cepBucoB kak B popmaTte XML, Tak u B popmate JSON;

— BKIOYEHME B OCHOBHOWM TEKCT cTaHdapTa pekomeHgaumm RESTful-apxuTekTyphbl Kak
npeanoYTUTENbHOM apXnTeKTypbl paspaboTkm Beb-cepBUCOB;

— OKOH4aTenbHyt aopaboTky MpunoxeHus | nocne Toro, Kak Ha OCHoBe
yTBepXaeHHbIX KCB HOBbIX NPUHLMNOB obecneyeHns ypoBHen cobnogeHuns
TpeboBaHui cTaHgapTa 6yayT oKoHYaTenbHO 3adhMKCMPOBaHbI Npasunia
pa3paboTku;

— OKOH4aTenbHyt aopaboTky MpunoxeHus Il (npymep KOHKPETHON onepaLnoHHON
obnacTtu u TexHmyeckue cnosapu ansa APl, cosgaBaembix Ha 6a3e RESTful-
apXUTEKTYpbl);

— OKOH4aTenbHas gopaboTka unu ucknioveHune Mpunoxenus Il (Tunosble cnosapu
ans APl Ha ocHoBe SOAP);

— OKOHuaTenbHasa gopaboTka ABYX TUMOBbLIX MOAEMNEN, COCTABMSLLMX
MpunoxeHue 1V, n BbIGOp Npumepa, KoTopbii cocTaBuT Mpunoxenue V; n

— BblpaboTka KpUTEPUEB peLLeHns BONpoca O TOM, C Yero Heo6xoanMo HaunHaTb
pa3paboTky API: ¢ HanncaHusa Koda unu ¢ CoOCTaBIeHMs OroBopa
(cneundmnkaumm), 1 peLleHne Bonpoca o TOM, AOSPKHA M 3Ta MHopmaums
BXOOMTb B COCTaB CamMoro ctaHgapTa.

Kpome Toro, KCB npocun Lleneyto rpynny npeactaBUTb OKOHYATENbHbIA MPOEKT HOBOIO
cTaHgapTa Ans pacCMOTPEHUst Ha ero BOCbMOW ceccumn (CM. NyHKT 53 gokymeHta CWS/7/29).

6. PykosoguTtenammu HoBon Lieneson rpynnbl no API 6binv HasHayveHbl BegomcTBo
UHTennektyansHon cobcteeHHocTn Kanaabl (CIPO) n BegomcTBO MHTENNEKTyansHom
cobctBeHHocTn CoeguHeHHoro Koponesctea (UKIPO). LleneBas rpynna HacunTbiBaeT OKOSO
50 yyacTHUMKOB, 1 C MOMEHTa ee yypexaeHUs npoBena WeCcTb BUPTYyanbHbIX BCTpeY Ang
paccMOTpeHUs NpoeKTa HOBOro npeasiaraeMoro ctaHgapTa U BHeCEHUS NpeanoXeHnin no ero
yCOBEpPLUEHCTBOBaAHUIO. B pesynbTaTte aTux obcyxaeHun, npoBedeHHbIX Ha BUKU-GOpyMe 1 B
X04e OHNanHOBbIX COBELLaHW, B NPOEKT Obl0 BHECEHO HECKOSTbKO U3MEHEHWI, KOTOPbIE
nogpobHee paccMaTpuBalOTCS HUXE B NyHKTax 12, 13 1 14 HacTosiwero JOKyMeHTa.
HacTosawmn gokyMmeHT nogrotoeneH MexayHapogHbeiM 610po B TECHOM COTpygHUYECTBE

c pykoBoautenamm Lieneson rpynnel no API.

MPELNATAEMbIA HOBbLI CTAHOAPT BOWUC

7. B pamkax BbinonHeHus 3agaym Ne 56 Llenesag rpynna no API, a oo Hee — LleneBas
rpynna no XML gns MNC, nogrotoBunun npeariaraeMbii KOMMSIEKC peKOMeHOaLmMIA No paspaboTke

CWS/8/2
cTp. 3

API onsi Be6-cepBUCOB, NpegHasHavYeHHbIX 4511 06paboTkn gaHHbIX 06 MHTENNEKTyanbHON
cobctBeHHocTU (MC), obMeHa TakumMu gaHHbIMU U UX pacnpoCTpaHeHnsd, N NpeacTaBuIn Ha
paccmoTpeHne KCB okoH4aTenbHoe npeanoxeHue no Hosomy ctangapty BOUC, kotopoe
BOCMpoun3BoaunTCcs B MNpUNoXXeHnn K HaCToALLEMY AOKYMEHTY.

8. MexgyHapogHoe Gropo npegnaraeT npucBouTb HoBoMY cTaHgapTy BOUC cnepytowee
HanMeHOBaHUE:

«Ctangapt BONC ST.90 — PekomeHaaums no obpaboTtke 1 nepegade gaHHbIX 00
WHTENNeKTyanbHon cO6CTBEHHOCTM € ncnonb3oBaHneM AP| (MHTepdencoB NporpaMmmMmMpoBaHUs
NPUNOXXeHUN) Ans Be6-cepBnCOB».

|=|,eJ'Ib

9. Llenb npeanaraemoro ctaHgapTta — opMynnmpoBka pekoMmeHgauun no paspabotke API,
obneryatowmx obpaboTky gaHHbIX 06 IC 1 06MeH nmm yepes MIHTEpPHET B cornacoBaHHbIX
dopmaTax. OCHOBHas 3agada f4aHHOro cTaHgapTa COCTOUT B obecneyvyeHny cnegyroLmx
NPenMMyLLEecCTB:

— epguHoobpasue npoueayp 3a cyeT BBeAEHUA eaUHbIX NPUHUUNOB paspaboTku Beb-
CEepPBUCOB;

— NOBbILIEHNE COBMECTUMOCTU OaHHbIX MeXAy napTHepamu no pa3paboTke Be6-
CEepPBUCOB;

— co3faHue ycrnosui 4nst NOBTOPHOrO MCNONb30BaHUA AaHHbIX bnarogaps
YHUMKaLMM NpUHLMNOB pa3paboTku;

— bonbwas rmbKoCcTb B MMEHOBaHMM AaHHbIX pa3HbIMIU OnepaLnoHHbIMK
noapasaeneHnsaMmn 3a cHeT pas3paboTKM YETKUX NPaBUIT UX UMEHOBaHUS B
cooTBeTCcTBYlOLWNX XML-pecypcax;

— cos3faHuve ycrnosui Ans 3awméHHoro obmeHa nHopmaumen;

— paspaboTka NpaBWiIbHO OPraHM30BaHHbIX BHYTPEHHUX OnepaLMOHHbIX NPoLeayp B
KayecTBe AOMOSHUTENBHOW YCAYrK, KOTopast MOXeT npegnaratbCcsa gpyrnm
opraHusaumsm; u

— WHTEerpaums BHYTPEHHMX onepaunoHHbIX npouenyp OpraHunsaumm n obecneveHune
MX OUHaMWUYECKOM CBSA3U C OnepaumoHHbIMU Npoueaypamu napTHEPOB.

Cdepa npumeHeHuns

10. XoT4 yxxe cerogHs CyLecTByeT MHOXECTBO pekoMeHaaunn gns paspadotyukos API,
uenb npegnaraemoro BOUC crangapta Ha APl ansa Be6-cepBrcoB — hopMynmpoBaTh
KOHKpETHblE pekoMeHOauun ansa cryyaes, korga takme API paspabaTbiBaloTca BegoMcTBaMu
WHTennekTyanbHom cobcTBeHHocTH (BUC) n/vnn paspabotymkamum, B3aMMoOeNnCTBYOLWMMN
¢ Takummn BUC, a Takke opraHMsaumsamm, B KOTOpbIX Takne Beb-cepBuCbl obecnevmsaroT
06paboTky aaHHbIX 06 NC nnm obMeH TakuMmn JaHHbIMMU.

11. KomuTeT HageeTc4, YTO Npeanaraemblin CTaH4apT NO3BONUT YNPOCTUTb U YCKOPUTL
pa3paboTky API Beb-cepBMCOB Ha OCHOBE €€ YHU(pMKaLmm, a Takke NoBbICUTb YPOBEHb
coBmecTMmMocTu API, co3gaBaemblx AN pasnnyHbix Be6-cepBrCOB.

CoBepluUeHCTBOBaHNE NPOeKTa

12. Co BpeMeHu NpeacTaBneHns Ha paccmoTpeHne ceabMon ceccum KCB nocnegHero
paboyero npoekta ctaHgapTa B OCHOBHOM TEKCT nNpoekTa Oblnn BHECEHbI crieaytoLme
yny4dweHns (HOBbIN TEKCT NOAYEPKHYT):

(a) B ocHoBHOM TekcT cTaHaapTa Obinn BHeCceHbl 6a30BLIE pefaKLMOHHbIE NOMNpPaBKy,
CBsi3aHHbIE C ynyyleHeM oopmMaTUPOBaHNS U UCMIPaBEHMEM HYMepaLnm
coaepXaluxcsi B HeM npasun;

(b) B kauyecTBe HOBOro NyHkKTa 6 4OOGABNEHO pedakLMOHHOE NpUMeYaHue, OONONMHUTENBHO
pasbsCHAOLLEe Ha3HaYeHne ctaHgapTa. ATOT NYHKT rnacuT:

https://www.wipo.int/edocs/mdocs/classifications/en/cws_7/cws_7_4-annex1.docx
https://www.wipo.int/edocs/mdocs/classifications/en/cws_7/cws_7_4-annex1.docx

CWS/8/2
cTp. 4

«Copepxalwmecs B TEKCTE CTaHOapTa agpeca pasmelleHuns pecypcos (URL),
NPUBOASATCA TOMbKO B UIMIOCTPATUBHBIX LENAX U HE ABNAITCA peanbHbIMU»,

(c) Mocne nonyyeHus samevanuin BUC npaesuna paspabotkm [RSG-73] n [RSG-148]
nepeseaeHbl U3 kateropun «OBA3ATESIbHbBIX k peanusaumm» B KaTeropumio
«PEKOMEHAYEMBbIX k peanusaunn;

(d) OobGaeneHsbl HOBbIM NYHKT 50 1 npaBuno paspaboTtkn [RSG-67], B COOTBETCTBUM C
KOTOPbIMW BEAOMCTBaM pekomeHayeTca nybnmkoBaTb CBOM CTpaTernm yrnpasneHus
onepaunoHHbIMU umknammu APIL. Mpaeuno paspabotku [RSG-67] rnacur:

«Paspabotunkam PEKOMEHOYETCA nybnukoBaTbe CBOM CTpaTernm ynpasrneHns
onepaumoHHbIMK Umknamn API, no3BonsitoLwmne nonb3oBaTensam NnoHMMaTh, Kakum
OyaeT CpoK NOAAEPXKKM KOHKPETHOM BEPCUMN;

(e) B npaBuno paspabotkmn [RSG-64] Obina BHeceHa nonpaeka, Lefib KOTOpon —
pekoMeHAoBaTb MeTOo[, yrpaBreH s BEpPCUsiMU 3arofIoBKOB M UNMOCTPUPOBATL 3TOT
mMeToa NnpuMepoM. B HacTosiLee Bpemsa 3TO NpaBuso rnacut:

«PEKOMEHLOYETCH, utobbl API ans Beb-cepBuca nogaepxnBan eauHbIi MeTon
yrnpaBreHnsl BEPCUSIMU CEPBUCA C UCNOJTb30BaHMEM MEeTOAa ynpaBleHns BEPCUSMU
Ha 6a3e URI, Hanpumep /api/v1/inventors UNu ynpaBneHUs BEPCUAMMU
3arofioBKOB, HANpUMep Accept-version: v1, WM yNpaBNeHUS BEPCUSIMU
HocUTEeNnen, Hanpumep Accept: application/vnd.vl+json. Bepcum ctpok
3anpocoB MeHsATb HE PEKOMEHLOYETCA».

() B npasuno paspaboTtkn [RSG-91] BHeceHa nonpaska, cogepxallas pekomeHgyemoe
Ha3BaHuWe 3aronoBka naeHTudukaTopa koppenduun. Hosas pegakums 3Toro npasuna
rnacur:

«PEKOMEHAYETCH, utobbl kKaxkaast 3aperncTpmpoBaHHas owmnbka nvena
YHUKanbHbIN naeHTudgukatop koppenaunn. PEKOMEHOYETCA vcnonb3osaTh
nonb3oBaTefibckun HTTP-3aronosBok, kotopbit PEKOMEHOYETCHA nmeHoBaTtb
"noeHTudrKaTopom Koppenaummn"»;

(g) B ocHOBHOM TekCT cTaHAapTa gobasneH NyHKT 98, B KOTOPOM KOHKPETHO FOBOPUTCA, YTO
npu paspaboTtke API npegnoyvteHne otTaaeTcsa apxuTekTypHoMy ctunto REST. Mnaea,
kacarowasnca npotokona SOAP, 6binia gobaBneHa ToNbKo AN NOSAHOThI KAPTUHDI; U

(h) B nyHKT 3 OCHOBHOrO TeKCTa cTaHAapTa Obino gobasneHo onpegeneHve mogenm RMM,
KOTOpOE rnacwur:

«TepmuH "RMM" o3HavaeT "Mogenb 3penoctun PnyapacoHa™ — nokasaTernb
3penocTtu API, paspaboTtaHHoro B apxutekType REST, no wkane ot 0 4o 3».

13. TMomumo gopaGoTOK OCHOBHOMO TEKCTa NpeasiaraemMoro ctaHaapTa, PasbsaCHEHHbIX
B NMyHKTe 12 Bbllle, BHECEHbI TAKXKE CreayroLme NonpaBkn B NPUIOXKEHNS1 K OCHOBHOMY TEKCTY
cTaHfapTa:

(a) OkoHuaTtenbHo gopaboTtaHo MpunoxeHue I. MNMpunoxeHune | — aTo YeTbipe Tabnuubl,
coaepxaliue ycrnoBus, KOTopble OOIMKHbI BbINOMHATLCA ANnsa obecneyeHnst Toro nnm
WHOro YpOBHSA cOBNoaeHNst AaHHOro CTaHAapTa;

(b) OkoHuaTenbHo gopaboTtaHo MpunoxeHue Il. MpunoxeHue Il copepxuT n3bpaHHble
NpMMepbl ONEePaLMOHHBIX U TEXHUYECKMX TEPMUHOB, UCMOSb3yeMbIX Npy pa3paboTke
RESTful API, Bknto4asa npuMepbl NnapaMeTpoB, B3ATbIE U3 UNMIOCTPATUBHbBIX MOOENEN,
cogepxawmxca B MNpunoxernun Il (paHee — MNpunoxexne V). MexayHapogHoe 6topo
Takke NOAroTOBWIIO cneaylLlee peaakuMoHHOe NpumeYaHme:

«B 6yaywen Bepcumn ctaHgapTta Llenesas rpynna no APl onyGnukyeT ccbifiky Ha
B6onee nonHbIN NnepedeHb TepmnHoB IC B REST-apxuTekType ansa craHgapTta

CWS/8/2
cTp. 5

ST.96 n TepmuHoB anst gopmarta JSON, koTopbi 6yaeT NOCTOAHHO MOMOJTHATLCS
KaK akTUBHbIN CrioBapb No Mepe AanbHenwWwero passuTnsa aNemMeHToB 1 croBaps
TEPMUHOB, OTHOCALLMXCA K obnactn NCy»;

(c) MpwunoxeHue Il 6uINo ncknoveHo: Lienesas rpynna npuvwna K BbIBOAY, YTO 3TO
NpUNoXeHne He JOIMKHO BXOAUTb B COCTaB AAHHOro CTaHaapTa;

(d) OkoHuaTtenbHo gopaboTtaHo MNpunoxeHue IV, KOTOpoe NepeHymMepoBaHo
B [MpunoxeHue lll: cywecTByOWmMn OCHOBHOW npumep B MNMpunoxeHuu 1V 6bin NCKNoYeH
1 3aMeHeH 06oMMK NpuMepamm TUNOBbIX cneumdukaumi API, 0 KOTOPbIX YNOMUHANOCh
BbILLIE N KOTOPbIE NOSICHAITCS HUXE B NyHKTE 12;

(e) MNpunoxeHue V BbINo ncknoveHo: Lienesas rpynna npuvina K BbIBOAY, YTO 3TO
NpUNoXeHne He OOMKHO BXOAWUTb B COCTaB AAHHOIo CTaHAapTa;

(f) Mpwunoxenusa VI, VIl u VIII 6binn nepeHymepoBaHsbl B [Npunoxexus 1V, V n VI,
COOTBETCTBEHHO;

(g) OobaeneHo HoBoe MpunoxeHue VI, cogepxalyee onnucaHme onepawlmMoHHOro Lmkna
API, npnssaHHoe NoMoYb BEAOMCTBaM Npu Nybnvkauum ux nnaHa ynpasneHns
onepaumoHHbIMU LMKNaMu;

(h) B MpwunoxeHuu |l npumMepbl onepaunoHHbIX TEPMUHOB ANd «receivingOfficeCodex
N «receivingOfficeDate» Oblnn NpU3HaHbl OTHOCAWMMNUCS KO «BCEM>»
onepaumoHHbIM obnacTam.

14. Xop noaroToBKY TUNOBBLIX MOAenen, npeactaBneHHbIX B MpunoxeHun IV npeanaraemoro
cTaHgapTa, obcyxaancs paHee Ha cegbmon ceccumn KCB (cM. nyHKTbl 43-44 nokymeHTa
CWS/7/29). B HacTosilee Bpems 3aBepLueHa paboTa no nogroToeke cneumndukaummi obenx
TMNOBbIX Moaenen. [NepBbIn NpuMep, Co34aHHbIM Ha ocHoBe crnpaBoyHuka (DoclList) API ans
EauHoro noptana goctyna k gocbe (OPD), 6bin pa3pabotaH Ha a3bike YAML (Yet Another
Markup Language) c otBeTtom B oopmarte XML. BTopon npumep npeacraesneH B gopmarte
RAML (RESTful APl Markup Language) c otBeTom B chopmaTte XML nnn JSON. Besa
Heobxoanmas AOKYMeHTauus no Kaxgomy M3 3TUX NpumMepoB MOXeT OblTb ckadaHa no
CCblfikam, NpuBeAeHHbIM B MpunoxeHuu 1V.

NMPOBHOE BHEOPEHUE

15. MexagyHapogHoe 61opo NpUCTYNUNO K BHyTPeHHEMY OBCYyXAeHUI0 MpoekTa cTaHaapTa
nocne wecton ceccum KCB n nnaHupyeT BHeapuTb ero npu paspabotke Beb-cepsucos BONC.
MpoekT cTaHgapTa yxe ucnonb3yeTtcst paspaboTtynkamum, paboTarowmMmm Hag Co34aHnem
HekoTopbix APl onst Be6-cepeucos BOWC, B TOM uncne komaHgamu pa3paboTymkoB NpoekTa
WIPO Sequence, MNMoptana C BOUC n npoekta WIPO Case.

16. BHegpeHue npegnaraemoro HoOBOro craHgapTa TpebyeT ncnonb3oBaHua Mpunoxenns | n
ykasaHusa chopmata oteeTa (XML nnu JSON), a Takke Bbibopa KOHKPETHOIO YPOBHS
cobntoaeHns TpeboBaHuK ctaHaapTa. Tak, ecnu nporpammucT paspabartbiBaeT API, koTopoe
naet otBeT B popmate JSON, 1 xoyeT BblIbpaTb HaMBbLICLLMI YPOBEHb COOMOAEHUS
TpeboBaHuii (AAJ), OH OOIMKEH criegoBaTth B npouecce pa3paboTky pekoMeHOauusm,
npuBeaeHHbiM B Tabnuue 3 MNMpunoxenus |.

OANBHEWLWAS PASPABOTKA U NPOOBWMXXEHME CTAHOAPTA

17. B cBA3KM C NepexoaoM Bce HOBbLIX BEAOMCTB K Ucnonb3oBaHuto API ans peanusaunm
CBOMX OMepaumnOHHbIX NPOLIECCOB U OKa3aHUSA ycnyr 3auHTepecoBaHHbIM CTOPOHaM
MexayHapogHoe 6opo oco3Harno uenecoobpasHocTb cbopa API, paspabaTbiBaeMbix
pasnuyHbiMu BUC. MexayHapogHoe 6topo cobupanock npeanoxunte BUC npuHATe yyactme B
NPsIMOM OnNpoce, KOTOPbI N03BONM Obl NONYYNTb NPeACTaBNEHME O TOM, B KAKON CTENEHU
BUC npumeHnstoT APl npu peanusaumm cBomx cepeucoB. [na 6onee acdbdekTMBHOro
BbIMOSTHEHMS 3TOW 3aa4um 1 perynsapHoro obHoBnNeHnsa aton nHopmMaumm Llenesas rpynna no

https://www.wipo.int/standards/en/sequence/
https://www.wipo.int/case/en/

CWS/8/2
CTp. 6

API npegnaraeT B Ka4yecTBe anbTepHaTMBbI CO34aTb €ANHbIN KaTanor, KOTopbIn cogepxan 6ol
nepedeHb API, K KOTOpbIM BEAOMCTBA Aat0T JOCTYN BHELUHMM CTOpOHaM. Takown katasnor
OOIKEH MMeTb NopTan, NO3BONSIOLWMI NONb3oBaTENAM HAaXOAUTb AOCTYNHbIE ANs HUX BEO-
cepBuCbl, pa3paboTtaHHbie BVC 1, N0 BO3MOXHOCTU, MPOCTYIO MOUCKOBYHO (pyHKUMIO. OH MOXeT
TaKke CNyXntb Ang nyywero nHdopmmnpoBaHusi nonb3osartenen n BUC o6 API,
pa3paboTaHHbIX HEKOTOpbIMK BegomMcTBamu. [1ns atoro Llenesas rpynna no API npegnaraet
KCB obpatutbcs k Cekpetapumaty ¢ npocbboi 06 n3y4yeHnn BO3MOXHOCTU pa3paboTku, u,
nanee, paspaboTke unu gopaboTtke, Bo B3anmogenctemm ¢ Lienesown rpynnon no API,
aBTOMAaTM3MpPOBAHHOIO MHCTPYMeHTa cbopa nHgopmaunn 06 API, npegocTaBnsemblx
BeAOMCTBaMu, 1 nybnvkaumm ux eguHoro katanora Ha Be6-cante BOUC. Lienesagd rpynna
Takke npegnaraeTt KCB CekpeTtapuaT npeacraBuTb Ha crieaytoulen ceccumn Komuteta oTyeT o
xoge aTon paboTsl.

18. 17 mioHg 2020 r. MexayHapogHoe 6topo, B coTpyaHuyecTBe ¢ Llenesoin rpynnon no API,
NpPOBENO oHMNanHoBoe MeponpusaTne «eHb API», B KOTOPOM Yepe3 BUPTYyarbHYyto nnatgopmy
npuHsann ydactue okono 200 npegcrasutenen BUC n kommepyecknx npoBangepoB AaHHbIX MO
NC, paboTatowmx ¢ BUC n/unm KoHeYHbIMM NONb30BaTENSMN N NPOSIBUBLLNX UHTEPEC K 3TOMY
MeponpuATUIO. Y4yacTHUKM obcyannu paspaboTtaHHbin BONC npoekTt ctaHgapTa API Beb-
CepBU1COB, TeHAEeHUUN B obnactu passutusa AP, ctpaternm paspabotkm APl B KOMMEpPYECKOM
cekTope u B pabote BUC n, HakoHeL, NpoaHannanpoBanu KOHKPETHbIN NpUMep peanusaumm
API B BUC ¢ ncnonb3soBaHuem ctangapta Ha APl. MexayHapogHoe 61opo HamepeHo v aanee
NPOBOANTbL COBMECTHbIE (DOPYMbI TAKOro poaa.

19. Ueneas rpynna no APl npodomknT cBou 3acefaHus anst oocyxaeHnsa ganbHenwmx
aopabotok ctaHaapta AP| nocne ero NpuHATKSA, BKMOYas, Kak ykasaHO B HOBOM peAakuMOHHOM
npumedannn B MNpunoxeHun |l, meTogbl cO3a4aHNS MHCTPYMEHTOB As 6onee oMHaMN4HOro
dopmmpoBaHma XML-cnoeapsa ctaHgapta BOUC ST.96, a ganbHenwem — JSON-cnosaps,
Takke COOTBETCTBYOLEro TpeboBaHmsam ctaHgapta BOUC ST.96.

20. Mocne npuHaTtua KCB npegnaraemoro HoBoro ctaHgapTta no APl gnsa Beb-cepBucoB,
3agadva Ne 56 BygeTt cumTaTbCs BbINONHEHHOW. Tem He MeHee, Llenesas rpynna no API Bugut
HeobXoaMMOCTb AanbHENLLIEro COBEPLLUEHCTBOBAHUS 3TOro HOBOro ctaHaapta BOUC B cesaau
C pa3BuTMeM TexHororun API, a Takke NpoaomKeHmsa apyrmx paboT, B TOM YnUCe OnMcaHHbIX
BbllLe B NyHKTe 18. B cBA3M ¢ aTum Llenesas rpynna npegnaraeT NpuUHATb crieaytollee
YTOYHEHHOE ONUcaHne 3ToM 3aJauu:

«ObecneunTb HeOGXo0ANMLIN NepecMoTp 1 obHoBMeHne ctangapta BONC ST.90,
okasaTb nogaepxky MexagyHapogHomy 6topo B paspaboTke egmHoro katanora AP,
npeaocTaBnsiemMbix BEAOMCTBaMU, U oKasaTb Noaaepxky MexayHapogHomy 6topo
B B nonynsapusaumm n BHeapeHnn ctangapta BOMC ST.90.»

21. KCB npednazaemcs:

€)) MPUHSIMb K c8e0eHUI0
codepxaHue Hacmosue20
OOKyMeHmMa U MPUIIOXKEHUS K HeMy;

(b) paccmompems U ymgepoums
Ha3eaHue rnpedriazaemoeo
cmaHdapma: «CmaHlapm BOUC
ST.90 - PekomeHdauusi no obpabomke
u nepedaye daHHbIX 06
UHMersnnekmyarnbHol cobcmeeHHocmu

CWS/8/2
cTp. 7

¢ ucrnionb3osaHuem API
(uHmeppelicos rnpozpamMmuposaHus
nipunoxeHud) 0ns eeb-cepsucos»;

(c) paccMompems U NpUHIMmMsb
HosabIli cmaHOapm BOMC ST.90,
80CIPOU3BEOEHHbIU 8 MPUIOXEeHUU K
Hacmosiuemy OOKyMeHmy;

(d) paccmompems U ymeepoume
usmeHeHHoe onucaHue 3ada4qu Ne 56,
npusedeHHoe 8 ryHkme 20 ebiwe; u

(e) paccmompems U ymeepoume
npednoxeHue Lleneesol epynrbi o
API o co3daHuu Cekpemapuamom
e0uHO20 Kamarioaa, Komopsbil 6ydem
pasmeuwieH Ha eeb-catime BOUC, u
coobueHuUU UM 0 Xxo00e BbINMOTHEeHUS
amou 3adayu Ha cnedyruwel ceccuu
KCB, kak ykaszaHo 8 nyHkme 17 ebiuie.

[MpunoxeHue cnenyeT]

CWS/8/2
NPUNOXXEHWE

WIPO STANDARD ST.XX

RECOMMENDATION FOR PROCESSING AND COMMUNICATING INTELLECTUAL PROPERTY DATA USING WEB
APIS (APPLICATION PROGRAMMING INTERFACES)

Final Draft

Proposal presented by the API Task Force for consideration at CWS/8.

TABLE OF CONTENTS

WIPO STANDARD ST.XX .etitttiteitt ettt ettt sttt b et b e bt eh e e bt a2 e e ek e o1 et eh e e b€ ee e e b e ea b e e b e e bt eh e e nE e e se e eb e enbeehe e bt eneeebeeneeebeentennnen 1
INTRODUGCTION ..etttitite i ettt e e e e et e e e e e s s bt ea e et e e e e e stts et eaeesassssbeeeeaeeaaass b eeeeaee e e sssbseeeeeeessnbbeeeaeeeaanstbaaeaeeaansnne 3
DEFINITIONS AND TERMINOLOGYutiiiittaititeeiteatee e aieeaueaeeaseeaseaseesseaseesseasseaaeenseaseeaseassesseassesseensesneessesnsessesnsessense 3
[N\ To) =1 1o LSO TP PP PP PP OPPRRTP 4

(€T T= o1l g To] 2= 110 o K TP U PR OU PR PPR PPN 4

RUIE TENEIEIS ...ttt h e e bt e e h b e e s b et e bt e e bt e e hb e e b e e e s b e e nbe e e be e e b e e snr e e beensne s 4
101] = U PR UURR 5
WEB API DESIGN PRINCIPLES.ottt sttt b e bbbttt b e et e st nbe e bt sae e bt e e e nbeenbenbeen 6
RESTRUL WEB APL....coiiiiiititiii ettt e e ettt e e e 44 ekttt e e e e e e s s bbb e e e e e e e aasbbeeeeaa e e e nsbbbeeeee e e e nbbbeeeaeesaansbbneaaeeaaannnnes 7

(0] S I o] 1910 0] 4 1= | KT PO PPUT R UPPPPPPPP 7

Status Codes

Pick-and-choose Principle

LY=o 0 ot Y/ (oo = I SO PRTPRPPPR 8
SUPPOItNG MUILIPIE FOIMALSeoiiiiie et r e et b e e e e e e sbe e resae e resenenae e 10
HT TP MEENOUS. ...ttt ekt e bt oo eh e e bt et eeh et e b et e bt e e bt e s bb e e be e esb e e san e e aneenaneenine et 11
Data QUETY PaITEINSciiiiiii i b e b s b e s h b e e s b e e s b e e s b e s s b b e s ebe s s hb e s he s s b e e b e e saae e 16
[0l = g T | T Vo USSP 21
1T 4 (o O] = (ot A TSSO P URTOPOPRN 23

Time-out 24

T2 (Y =T aE=T0 =T =T o PP 24
LR =3 = =T Tt oV o | T PR 26
LI L0151 = o o O SO PRPOUPRRPTPRIN 26
LONG-RUNNING OPEIALIONS.ccutitietietieite ettt sttt ettt a e bt ettt e et s b e e s bt easesb e e bt eae e eb e e e e st e e eeebeesbeesresaeereeanenne e 26
Y=ot U 11201 o T 1= SR
API Maturity Model ...
SOAP WEB AP ...ttt h et h et h bt h e e b et e e b £ e bt R e e R R e e AR £ oAbt SR e e bt R £ e bt en b e Rt et e b e e bt eneenheen b e nneenea

GENETAI RUIBS ...ttt ekttt e sttt e o bt e oo h bt e e bttt e e a b e e o b bt e e oa b e e e e en b b e e e an b et e e nhb e e e e abbe e e annbeeennnneas 32

Schemas 32

NAMING ANA VEISIONING ...ttt st e e bt b shb e s b e e et e e shb e e she s e b e e s b e e sba e e be e e st e e sbe s e abeesbeesbne et 33
WED SErVICE CONLIACT DESIGN ...uvveeeieiieeeitiie e sttt e sttt e e st e e e s eee e e teeeeasnteeeansaaeesssaeeeassaeeaanseeeeasseeeesaeeeaanseeeasneeesnsaneennseeennn 34
Attaching PoliCIieS t0 WSDL DEfiNItIONSoeeiiieieiiiee et s e s ee e st e e s e e s sntee e e naeeeanseeeennneeesnseeeennneeeenn 34
SOAP — WED SEIVICE SECUILYviiueiiieitiitiete ettt sttt ettt ettt b etk ee bt esb e et e eh e et e ebe e b e ebeenteessenbe e b e nae e b e eanenre e 34
(D 1z QY o= o] 10T L PP PP POPPPPPPPTN 34
CONFORMANCE ...ttt a et oottt oottt e aa bt e e eh bt e e e bttt e e s b e e e bbb e e eabe et e e abe e e e anbe e e e nnteeesnreeeaas 35

REFERENGCES ... bbb e e bbb e b e s aa s e et 36

CwWsS/8/2
Mpunoxexwue, cTp. 2

WWIP O SEANOANTS ...tttk eh e bt ea bkt e ke e a e e b e e e bt e oo bt oA h et e b et eh et e b e e e bt e ea bt e nbe e e sbeennneenneeeneennnis 36
StANAArdS AN0 CONVENTIONSuiiiiiiiiiitee ittt sttt b et sa bt et e e s e et e sk e e e bt e ea bt e ebs e e beesa bt e sbe e e bt e san e e aneesaneeninee e 36
[P OffiCES’ REST APIS ...ttt ettt ettt e kbt e bt e s bt e sh b e e bt e 22t e e SR b e e b et e b e e eab e e shbe e ke e embeesaneanaeeanbeenane et 37
Industry REST APIS and Design GUIAEINESccoiuuiiiiiiieeiiiie ettt sb et e e e sste e e s st e e snneeesnteeeennnneeeas 37
Others 37
F N N USSR 38
ANNEX L6 60
F N = | USRS 62
DOCLISt EXAMPIE MOTEI ...ttt s b e b e s e e s e et e e s b e sba s e be e s e e sene e 62
Patent Legal Status EXAMPIE MOUEcouiiiiiiiieiiieiti ettt st b e b e e s bb e e nbe e enbeesaneenaeesbeenine et 62
ANNEX IV
ANNEX V
ANNEX VI
ANNEX VIl 71
Created 71
Published 71
(072 o] =07 (=T O SPR 72
Retired 72

CwWsS/8/2
Mpunoxexwue, cTp. 3

INTRODUCTION

1. This Standard provides recommendations on Application Programming Interfaces (APIs) to facilitate the processing
and exchange of Intellectual Property (IP) data in a harmonized way over the Web.

2. This Standard is intended to:

— ensure consistency by establishing uniform web service design principles;
— improve data interoperability among web service partners;
— encourage reusability through unified design;

— promote data naming flexibility across business units through a clearly defined namespace policy in associated
XML resources;

— promote secure information exchange;

— offer appropriate internal business processes as value-added services that can be used by other organizations;
and

— integrate its internal business processes and dynamically link them with business partners.

DEFINITIONS AND TERMINOLOGY

3. For the purpose of this Standard, the expressions:

“Hyper Text Transfer Protocol (HTTP)” is intended to refer to the application protocol for distributed, collaborative,
and hypermedia information systems. HTTP is the foundation of data communication for the World Wide Web.
HTTP functions as a request—response protocol in the service oriented computing model.;

— “Application Programming Interfaces” (APl) means software components that provide a reusable interface between
different applications that can easily interact to exchange data;

— “Representational State Transfer (REST)” describes a set of architectural principles by which data can be
transmitted over a standardized interface, i.e. HTTP. REST does not contain an additional messaging layer and
focuses on design rules for creating stateless services;

— “Simple Object Access Protocol (SOAP)” means a protocol for sending and receiving messages between
applications without confronting interoperability issues. SOAP defines a standard communication protocol (set of
rules) specification for XML-based message exchange. SOAP uses different transport protocols, such as HTTP
and SMTP. The standard protocol HTTP makes it easier for SOAP model to tunnel across firewalls and proxies
without any modifications to the SOAP protocaol;

— “Web Service” means a method of communication between two applications or electronic machines over the World
Wide Web (WWW) and Web Services are of two kinds: REST and SOAP;

— “RESTful Web API” means a set of Web Services based on REST architectural paradigm and typically use JSON
or XML to transmit data;

— “SOAP Web API” means a set of SOAP Web Services based on SOAP and mandate the use of XML as the
payload format;

— “Web Services Description Language (WSDL)" means a W3C Standard that is used with the SOAP protocol to
provide a description of a Web Service. This includes the methods a Web Service uses, the parameters it takes
and the means of locating Web Services etc.;

— RESTful APl Modelling Language (RAML) refers to a language which allows developers to provide a specification
of their API,

— Open API Specification (OAS) refers to a language which allows developers to provide a specification of their AP,
— “Service Contract” (or Web Service Contract) means a document that expresses how the service exposes its

capabilities as functions and resources offered as a published API by the service to other software programs; the
term “REST API documentation” is interchangeably used for the Service Contract for RESTful Web APlIs;

— “Service Provider” means a Web Service software exposing a Web Service;

— “Service Consumer” means the runtime role assumed by a software program when it accesses and invokes a
service. More specifically, when the program sends a message to a service capability expressed in the service
contract. Upon receiving the request, the service begins processing and it may or may not return a corresponding
response message to the service consumer;

— “Camelcase’” is either the lowerCamelCase (e.g., applicantName), or the UpperCamelCase (e.g., ApplicantName)
naming convention;

— Kebab-case is one of the naming conventions where all are lowercase with hyphens “-“ separating words, for
example a-b-c;

— “Open Standards” means the standards that are made available to the general public and are developed (or
approved) and maintained via a collaborative and consensus driven process. “Open Standards” facilitate
interoperability and data exchange among different products of services and are intended for widespread adoption;

— Uniform Resource Identifier (URI) identifies a resource and Uniform Resource Locator (URL) is a subset of the
URIs that include a network location;

https://en.wikipedia.org/wiki/Application_protocol
https://en.wikipedia.org/wiki/Hypermedia
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/Request%E2%80%93response

4.

CwWsS/8/2
Mpunoxexwue, cTp. 4

“Entity Tag (ETag)” means an opaque identifier assigned by a web server to a specific version of a resource found
at a URL. If the resource representation at that URL ever changes, a new and different ETag is assigned. ETags
can be compared quickly to determine whether two representations of a resource are the same;

“Service Registry” means a network-based directory that contains available services;

“RMM” refers to the Richardson Maturity Model a measure of REST API maturity using a scale ranging from 0-3;
and

“Semantic Versioning” means a versioning scheme where a version is identified by the version number
MAJOR.MINOR.PATCH, where:

* MAJOR version when you make incompatible API changes,
* MINOR version when you add functionality in a backwards-compatible manner and
* PATCH version when you make backwards-compatible bug fixes.

In terms of conformance in design rules the following keywords should be interpreted, in the same manner as

defined in para. 8 of WIPO ST.96%, that is:

MUST: an equivalent to “REQUIRED” or “SHALL”, means that the definition is an absolute requirement of the
specification;

MUST NOT: equivalent to “SHALL NOT”, means that the definition is an absolutely prohibited by the specification;
SHOULD: equivalent to “RECOMMENDED”, means that there may exist valid reasons for ignoring this item, but the
implications of doing so need to be fully considered;

SHOULD NOT: equivalent to “NOT RECOMMENDED”, means that there may exist valid reasons where this behavior
may be acceptable or even useful but the implications of doing so need to be carefully considered; and

MAY: equivalent to “OPTIONAL”, means that this item is truly optional, and is only provided as one option selected
from many.

NOTATIONS

5.

7.

General notations

The following notations are used throughout this document:

<>: Indicates a placeholder descriptive term that, in implementation, will be replaced by a specific instance value;
“”. Indicates that the text included in quotes must be used verbatim in implementation;
{}: Indicates that the items are optional in implementation; and

Courier font: Indicates keywords or source code.

The URLSs provided within this Standard are for example purposes only and are not live.

Rule identifiers

All design rules are normative. Design rules are identified through a prefix of [XX-nn] or [XXY-nn].

(a) The value “XX” is a prefix to categorize the type of rule as follows:

— WS for SOAP Web API design rules;
— RS for RESTful Web API design rules; and
— CS for both SOAP and RESTful WEB API design rule.

(b) The value “Y” is used only for RESTful design rules and provides further granularity on the type of response
that the rule is related to:

— “G”indicates it is a general rule for both JSON and XML response;
— “J”indicates it is for a JSON response; and
— “X’indicates it is an XML response.

(c) The value “nn” indicates the next available number in the sequence of a specific rule type. The number does
not reflect the position of the rule, in particular, for a new rule. A new rule will be placed in the relevant
context. For example, the rule identifier [WS-4] identifies the fourth SOAP Web API design rule. The rule [WS-4]

! Please refer the References chapter

CWsS/8/2

Mpunoxexwue, cTp. 5

can be placed between rules [WS-10] and [WS-11] instead of following [WS-3] if that is the most appropriate
location for this rule.

(d) The rule identifier of the deleted rule will be kept while the rule text will be replaced with “Deleted”.

SCOPE

8. This Standard aims to guide the Intellectual Property Offices (IPOs) and other Organizations that need to manage,
store, process, exchange and disseminate IP data using Web APIs. It is intended that by using this Standard, the
development of Web APIs can be simplified and accelerated in a harmonized manner and interoperability among Web APIs
can be enhanced.

9. This Standard intends to cover the communications between IPOs and their applicants or data users, and between
IPOs through connections between devices-to-devices and devices-to-software applications.
WEB API A WEB API B
+ Patents Patents
* Trademarks Request Trademarks
. Designs Designs
* Geographical Geographical
Indications Response Indications
* Others Others
> Filing Request > Filing
> Processing > Processing
» Publication > Publication
> Search Response > Search
> >
Mobile Mobile
Laptop Laptop
Desktop Desktop

Fig. 1 Scope of the Standard

10. This Standard is to provide a set of design rules and conventions for RESTful and SOAP Web APIs; list of IP data
resources which will be exchanged or exposed; and model APl documentation or service contract, which can be used for
customization, describing message format, data structure and data dictionary in JSON? and/or XML format based on WIPO
Standard ST.96.

11. This Standard provides model Service Contracts for SOAP Web APIs using WSDL and, for RESTful Web APIs using
the REST API Modeling Language (RAML) and Open API Specification (OAS). A Service Contract also defines or refers to
data types for interfaces (see the Section “Data Type Convention” below). This Standard recommends three types of
interfaces: REST-XML (XSD), REST-JSON and SOAP-XML (XSD).

12. This Standard excludes the following:

(a) Binding to specific implementation technology stacks and commercial off-the-shelf (COTS) products;

(b) Binding to specific architectural designs (for example, Service Oriented Architecture (SOA) or Microservice
Oriented Architecture (MOA));

(c) Binding to specific algorithms such as algorithms for the calculation of ETag, i.e. calculation of a unique identifier
for a specific version of a resource (for example, used for caching).

2 The WIPO JSON Standard is currently under discussion but will be based on WIPO Standard ST.96

CwWsS/8/2
MpunoxeHwue, cTp. 6

WEB API DESIGN PRINCIPLES

13. Both RESTful Web APIs and SOAP Web APIs have proven their ability to meet the demands of big organizations as
well as to service the small-embedded applications in production. When choosing between RESTful and SOAP, the
following aspects can be considered:

— Security, e.g., SOAP has WS-Security while REST does not specify any security patterns;
— ACID Transaction, e.g., SOAP has WS-AT specification while REST does not have a relevant specification;

— Architectural style, e.g., Microservices and Serverless Architecture Style use REST while SOA uses SOAP web
services;

— Flexibility;
— Bandwidth constraints; and
— Guaranteed delivery, e.g. SOAP offers WS-RM while REST does not have a relevant specification.

14. The following service-oriented design principles should be respected when a Web API is designed:

@)

(b)

(©

(d)
(e)

®
(@)
(h)
0)

@

Standardized Service Contract: Standardizing the service contracts is the most important design principle
because the contracts allow governance and a consistent service design. A service contract should be easy to
implement and understand. A service contract consists of metadata that describes how the service provider
and consumer will interact. Metadata also describes the conditions under which those parties are entitled to
engage in an interaction. It is recommended that service contracts include:

— Functional requirements: what functionality the Service provides and what data it will return, or
typically a combination of the two;

— Non-functional requirements: information about the responsibility of the providers for providing their
functionality and/or data, as well as the expected responsibilities of the consumers of that
information and what they will need to provide in return. For example, a consumer’s availability,
security, and other quality of service considerations.

Service Loose Coupling: Clients and services should evolve independently. Applying this design principle
requires:

— Service versioning — Consumers bound to a Web API version should not take the risk of unexpected
disruptions due to incompatible API changes; and

— The service contract should be independent of the technology details.

Service Abstraction — The service implementation details should be hidden. The APl Design should be
independent of the strategies supported by a server. For example, for the REST Web Service, the API resource
model should be decoupled from the entity model in the persistence layer;

Service Statelessness — Services should be scalable;

Service Reusability — A well-designed API should provide reusable services with generic contracts. In this
regard, this Standard provides a model service contract;

Service Autonomy — The Service functional boundaries should be well defined;

Service Discoverability —Services should be effectively discovered and interpreted,;

Service Composability Services can be used to compose other services;

Using Standards as a Foundation — The API Should follow industry standards (such as IETF, ISO, and OASIS)
wherever applicable, naturally favoring them over locally optimized solutions; and

Pick-and-choose Principle — It is not required to implement all the API design rules. The design rules should be
chosen based on the implementation of each concrete case.

15. In addition, the following principles should be respected especially with regard to the RESTful Web APIs:

(a)
(b)

(©

(d)
()
®

Cacheable: responses explicitly indicate their cacheability;

Resource identification in requests: individual resources are identified in requests; for example using URIs in
Web-based REST systems. The resources themselves are conceptually separate from the representations that
are returned to the client;

Hypermedia as the engine of application state (HATEOAS) - having accessed an initial URI for the REST
application—analogous to an individual accessing the home page of a website—a REST client should then be
able to use server-provided links dynamically to discover all the available actions and resources it needs;
Resource manipulation through representations - when a client holds a representation of a resource, including
any metadata attached, it has enough information to modify or delete the resource;

Self-descriptive messages - each message includes enough metadata to describe how to process the message
content;

Web API should follow HTTP semantics such as methods, errors etc.;

CwWsS/8/2
Mpunoxexwue, cTp. 7

(g) Available to the public - design with the objective that the API will eventually be accessible from the public
internet, even if there are no plans to do so at the moment;

(h) Common authentication - use a common authentication and authorization pattern, preferably based on existing
security components, in order to avoid creating a bespoke solution for each API;

(i) Least Privilege - access and authorization should be assigned to APl consumers based on the minimal amount
of access they need to carry out the functions required;

()) Maximize Entropy - the randomness of security credentials should be maximized by using API Keys rather than
username and passwords for API authorization, as API Keys provide an attack surface that is more challenging
for potential attackers; and

(k) Performance versus security - balance performance with security with reference to key life times and encryption
/ decryption overheads.

RESTFUL WEB API

16. A RESTful Web API allows requesting systems to access and manipulate textual representations of Web resources
using a uniform and predefined set of stateless operations.

URI Components

17. RESTful Web API s use URIs to address resources. According to RFC 3986, an URI syntax should be defined as
follows:

URI = <scheme> "://" <authority> "/" <path> {"?" query}
authority = {userinfo@}host{:port}

For example, https://wipo.int/api/vl/patents?sort=id&offset=10
/ / / /

scheme authority path query parameters

18. The forward slash “/” character is used in the path of the URI to indicate a hierarchical relationship between
resources but the path must not end with a forward slash as it does not provide any semantic value and may cause
confusion.

[RSG-01] The forward slash character “/” MUST be used in the path of the URI to indicate a hierarchical relationship
between resources but the path MUST NOT end with a forward slash.

19. URIs are case sensitive except for the scheme and host parts. For example, although
https://wipo.int/api/my-resources/uniqueId and https://wipo.INT/api/my-resources/uniqueld
are the same, https://wipo.int/api/my-resources/uniqueid isnot. For the resource names, the kebab-case
and the lowerCamelCase conventions provide good readability and maps the resource names to the entities in the
programming languages with simple transformation. For the query parameters, the lowerCamelCase should be used. For
example, https://wipo.int/api/vl/inventors?firstName=John. Resource hames and query parameter are all
case sensitive. Note, that resource names and query parameter names may be abbreviated.

20. A RESTful Web API may have arguments:

— In the query parameter; for example, /inventors?id=1;
— Inthe URI path segment parameter, for example, /inventors/1; and
— Inthe request payload such as part of a JSON body.

21. Except for the aforementioned argument types, which are part of the URI, an argument can also be part of the
request payload.

[RSG-02] Resources name MUST be consistent in their naming pattern.

[RSG-03] Resource names in the request SHOULD use kebab-case naming conventions and they MAY be
abbreviated.

[RSG-04] Query parameters MUST be consistent in their naming pattern

https://wipo.int/api/my-resources/uniqueId
https://wipo.int/api/my-resources/uniqueid
https://wipo.int/api/v1/inventors?firstName=John

CwWsS/8/2
MpunoxeHwue, cTp. 8

[RSG-05] Query parameters SHOULD use the lowerCamelCase convention and they MAY be abbreviated.

22. A Web API endpoint must comply with IETF RFC 3986 and should avoid potential collisions with page URLs for
the website hosted on the root domain. A Web API needs to have one exact entry point to consolidate all requests. In
general, there are two patterns of defining endpoints:

— As the first path segment of the URI, for example: https://wipo.int/api/vl/; and
— As subdomain, for example: https://api.wipo.int/vl/

[RSG-06] The URL pattern for a Web API MUST contain the word “api” in the URI.

23. Matrix parameters are an indication that the API is complex with multiple levels of resources and sub-resources.
This goes against the service-oriented design principles, previously defined. Moreover, matrix parameters are not standard
as they apply to a particular path element while query parameters apply to the request as a whole. An example of matrix
parameters is the following: https://api.wipo.int/vl/path;paraml=valuel;param2=value2

[RSG-07] Matrix parameters MUST NOT be used.

Status Codes

24, A Web API must consistently apply HTTP status codes as described in IETF RFCs. HTTP status codes should be
used among the ones listed in the standard HTTP status codes (RFC 7807) reproduced in Annex V.

[RSG-08] A Web APl MUST consistently apply HTTP status codes as described in IETF RFCs.

[RSG-09] The recommended codes in Annex V SHOULD be used by a Web API to classify the error.

Pick-and-choose Principle

25. A Service Contract should be tolerant to unexpected parameters (in the request, using query parameters) but raise
an error in case of malformed values on expected parameters.

[RSG-10] If the API detects invalid input values, it MUST return the HTTP status code “400 Bad Request”. The
error payload MUST indicate the erroneous value.

[RSG-11] If the API detects syntactically correct argument names (in the request or query parameters) that are not
expected, it SHOULD ignore them.

[RSG-12] If the API detects valid values that require features to not be implemented, it MUST return the HTTP
status code “501 Not Implemented”. The error payload MUST indicate the unhandled value.

Resource Model

26. An IP data model should be divided into bounded contexts following a domain-driven design approach. Each
bounded context must be mapped to a resource. According to the design principles, a Web API resource model should

be decoupled from the data model. A Web API should be modeled as a resource hierarchy to leverage the hierarchical
nature of the URI to imply structure (association or composition or aggregation), where each node is either a simple (single)
resource or a collection of resources.

27. In this hierarchical resource model, the nodes in the root are called ‘top-level nodes’ and all of the nested resources
are called ‘sub-resources’. Sub-resources should be used only to imply compositions, i.e. resources that cannot be top-level
resources, otherwise there would be multiple way of retrieving the same entities. Such sub-resources, implying association,
are called sub-collections. The other hierarchical structures, i.e. association and aggregation, should be avoided to avoid
complex APIs and duplicate functionality.

28. The endpoint always determines the type of the response. For example, the endpoint
https://wipo.int/api/vl/patents always returns responses regarding patent resources. The endpoint
https://wipo.int/api/vl/patents/1/inventor always returns responses regarding inventor resources.
However, the endpoint https://wipo.int/api/vl/inventors is not allowed because the inventor resource cannot
be standalone.

https://api.wipo.int/v1/path;param1=value1;param2=value2
https://wipo.int/api/v1/patents
https://wipo.int/api/v1/patents/1/inventor
https://wipo.int/api/v1/inventors

CwWsS/8/2
Mpunoxexwue, cTp. 9

29. Only top-level resources, i.e. with a maximum of one level should be used, otherwise these APIs will be very
complex to implement. For example, https://wipo.int/api/vl/patents?inventorId=12345 should be used
instead of https://wipo.int/api/vl/inventors/12345/patents .

[RSG-13] A Web APl SHOULD only use top-level resources. If there are sub-resources, they should be collections
and imply an association. An entity should be accessible as either top-level resource or sub-resource but not
using both ways.

[RSG-14] If a resource can be stand-alone it MUST be a top-level resource, or otherwise a sub-resource.
[RSG-15] Query parameters MUST be used instead of URL paths to retrieve nested resources.

30. There are types® of Web APIs: the CRUD (Create, Read, Update, and Delete) Web API and the Intent Web API.
CRUD Web APIs model changes to a resource, i.e., create/read/update/delete operations. Intent Web APIs by contrast
model business operations, e.g., renew/register/publish. CRUD operations should use nouns and Intent Web APIs should
use verbs for the resource names. CRUD Web APIs are the most common but both can be combined for example, the
service consumer could use an Intent Web APl modeling business operation, which would orchestrate the execution of one
or more CRUD Web APIs service operations. Using CRUD Web API, the service caller has to orchestrate the business
logic but with Intent Web APIs it is the service provider who orchestrates the business logic. CRUD Web APIs are not
atomic when compared with Intent Web APIs*.

— For example, a trademarks owner wants to renew the ones that will expire soon (for example, on yyyy-mm-dd).
This is a combination of the following business operations:

— Retrieve marks that will expire on yyyy-mm-dd; and
— Renew the retrieved marks by their international registration number.

Using a CRUD Web API the previous business operations would be modeled with a hon-atomic process, requiring
two actions such as:

Step 1: Get all the trademarks in XML format® that belong to the holder with the name John Smith and will expire,
for example, on 2018-12-31:

GET /api/vl/trademarks? holderFullName=John%20Smith&expiryDate=2018-12-31. HTTP/1.1
Host: wipo.int
Accept: application/xml

The following example HTTP response is returned:

HTTP/1.1 200 OK
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>
<tmk:TrademarkBag xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:com="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:tmk="http://www.wipo.int/standards/XMLSchema/ST96/Trademark"
xsi:schemalocation="http://www.wipo.int/standards/XMLSchema/ST96/Trademark
TrademarkBag.xsd">

<tmk:Trademark xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:com="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:tmk="http://www.wipo.int/standards/XMLSchema/ST96/Trademark"
com:operationCategory="Delete"
xsi:schemaLocation="http://www.wipo.int/standards/XMLSchema/ST96/Trademark
Trademark.xsd">

8 Alternatively we could classify APIs according to their archetype. See for instance: “REST API Design Rulebook: Designing
Consistent RESTful Web Service Interfaces”

4 An Intent API also enables the application of the Command Query Responsibility Segregation (CQRS) pattern. CQRS is a pattern,
where you can use a different model to update information than the model you use to read information. The rationale is that for
many problems, particularly in more complicated domains, having the same conceptual model for commands and queries leads to a
more complex model that is not beneficial.

5 JSON example is skipped since it does not add any value in this case.

https://wipo.int/api/v1/patents?inventorId=12345
https://wipo.int/api/v1/inventors/12345/patents

CwWsS/8/2
Mpunoxexwue, ctp. 10

<com:RegistrationNumber>
<com:IPOfficeCode>IT</com:IPOfficeCode>

<com:ST13ApplicationNumber>000000000000001</com:ST13ApplicationNumber>
</com:RegistrationNumber>

<com:ExpiryDate>2018-12-31</com:ExpiryDate>
</tmk:Trademark>

</tmk:TrademarkBag>

Step 2: Submit a trademark renewal request for each trademark retrieved in the previous step (depicting here only
the first renewal request):

POST /api/vl/trademarks/renewalRequests HTTP/1.1

Host: wipo.int

Accept: application/xml

Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>

<tmk:MadridRenewal xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:com="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:tmk="http://www.wipo.int/standards/XMLSchema/ST96/Trademark"
xsi:schemaLocation="http://www.wipo.int/standards/XMLSchema/ST96/Trademark
MadridRenewal .xsd">

<com:InternationalRegistrationNumber>000000000000001</com: InternationalRegist
rationNumber>

</tmk:MadridRenewal>

— The previous example could also be modeled with an atomic service call using an Intent Web API such as®:

POST /api/vl/trademarks/findAndRenew?holderFullName=john%20smithé&expiryDate=2018~-
12-31
Host: wipo.int

31. The type of Web API should then place constraints on how the resources are named to provide an indication on
which is being used. Note, that resource names that are localized due to business requirements may be in other languages.

[RSG-16] Resource names SHOULD be nouns for CRUD Web APIs and verbs for Intent Web APIs.

[RSG-17] If resource name is a noun it SHOULD always use the plural form. Irregular noun forms SHOULD NOT
be used. For example, /persons should be used instead of /people.

[RSG-18] Resource names, segment and query parameters MUST be composed of words in the English language,
using the primary English spellings provided in the Oxford English Dictionary. Resource names that are localized
due to business requirements MAY be in other languages.

Supporting multiple formats

32. Different service consumers may have differing requirements for the data format of the service responses. The
media type of the data should be decoupled from the data itself, allowing the service to support a range of media types.
Therefore, a Web APl must support content type negotiation using the request HTTP header Accept and the response
HTTP header Content-Type as required by IETF RFC 7231. For example, for requesting data in JSON format the header
Accept should be Accept: application/json and for data in XML format the Accept should be Accept:
application/xml. Likewise, for the header Content-Type. Additionally, a Web API may support other ways of
content type negotiation such as query parameter (for example ? format) or URL suffix (for example . json).

6 The element InternationalRegistrationNumber has been removed from the payload to denote all the IRNs. The ST.96 should be
not used or relaxed since the example here extends the uses cases allowed from ST.96.

https://wipo.int/api/v1/findAndRenew?applicantFullName=john

CwWsS/8/2
Mpunoxexwue, ctp. 11

[RSG-19] A Web API SHOULD use for content type negotiation the request HTTP header Accept and the
response HTTP header Content-Type.

33. APIs must support XML and JSON requests and responses. For XML, responses must be compliant with WIPO
Standard using XML such as ST.967. A consistent mapping between these two formats should be used.

[RSG-20] A Web API MUST support content type negotiation following IETF RFC 7231.
[RSG-21] JSON format MUST be assumed when no specific content type is requested.

[RSG-22] A Web APl SHOULD return the status code “406 Not Acceptable” if a requested format is not
supported.

[RSG-23] A Web APl SHOULD reject requests containing unexpected or missing content type headers with the
HTTP status code “406 Not Acceptable” or “415 Unsupported Media Type”.

[RSX-24] The requests and responses (naming convention, message format, data structure, and data dictionary)
SHOULD refer to WIPO Standard ST.96.

[RSJ-25] JSON object property names SHOULD be provided in lowerCamelCase, e.g., applicantName.
[RSX-26] XML component names SHOULD be provided in UpperCamelCase.
[RSG-27] A Web APl MUST support at least XML or JSON.

HTTP Methods

34. HTTP Methods (or HTTP Verbs) are a type of function provided by a uniform contract to process resource identifiers
and data. HTTP Methods must be used as they were intended to according the standardized semantics as specified in IETF
RFC 7231 and 5789, namely:

— GET —retrieve data

— HEAD - like GET but without a response payload

— POST — submit new data

— PUT —update

— PATCH - partial update

— DELETE — delete data

— TRACE —echo

— OPTIONS — query verbs that the server supports for a given URL

35. The uniform contract establishes a set of methods to be used by services within a given collection or inventory.
HTTP Methods tunneling may be useful when HTTP Headers are rejected by some firewalls.

36. HTTP Methods may follow the ‘pick-and-choose’ principle, which states that only the functionality needed by the
target usage scenario should be implemented. Some proxies support only POST and GET methods. To overcome these
limitations, a Web APl may use a POST method with a custom HTTP header “tunneling” the real HTTP method.

[RSG-28] HTTP Methods MUST be restricted to the HTTP standard methods POST, GET, PUT, DELETE, OPTIONS,
PATCH, TRACE and HEAD, as specified in IETF RFC 7231 and 5789.

7 A JSON specification and JSON schema based on ST.96 are currently under discussion by the XML4IP TF aiming to present them
for consideration at CWS/8 in November 2020 for consideration/adoption as a new WIPO Standard. Meanwhile, this standard
recommends the BadgerFish convention due to its simplicity until the JSON schema is provided. Some IPOs, such as EPO, also
refer to it, www.epo.org/searching-for-patents/data/web-services/ops.html.

CwWsS/8/2
Mpunoxexwue, cTp. 12

[RSG-29] HTTP Methods MAY follow the pick-and-choose principle, which states that only the functionality needed
by the target usage scenario should be implemented.

[RSG-30] Some proxies support only POST and GET methods. To overcome these limitations, a Web APl MAY
use a POST method with a custom HTTP header “tunneling” the real HTTP method. The custom HTTP header x-
HTTP-Method SHOULD be used.

[RSG-31] If a HTTP Method is not supported, the HTTP status code “405 Method Not Allowed” SHOULD be
returned.

37. In some use cases, multiple operations should be supported at once.

[RSG-32] A Web APl SHOULD support batching operations (aka bulk operations) in place of multiple individual
requests to achieve latency reduction. The same semantics should be used for HTTP Methods and HTTP status
codes. The response payload SHOULD contain information about all batching operations. If multiple errors occur,
the error payload SHOULD contain information about all the occurrences (in the details attribute). All bulk
operations SHOULD be executed in an atomic operation.

GET

38. According to IETF RFC 2616, the HTTP protocol does not place any prior limit on the length of a URI. On the other
hand, servers should be cautious about depending on URI lengths above 255 bytes, because some older client or proxy
implementations may not properly support these lengths. In the case where this limit is exceeded, it is recommended that
named queries are used. Alternatively, a set of rules which determine how to convert between and GET and a POST must
be specified. According to the IETF RFC 2616, a GET request must be idempotent, in that the response will be the same no
matter how many times the request is run.

[RSG-33] For an end point which fetches a single resource, if a resource is not found, the method GET MUST
return the status code “404 Not Found”. Endpoints which return lists of resources will simply return an empty
list.

[RSG-34] If a resource is retrieved successfully, the GET method MUST return 200 OX.
[RSG-35] A GET request MUST be idempotent.

[RSG-36] When the URI length exceeds the 255 bytes, the POST method SHOULD be used instead of GET due to
GET limitations, or else create named queries if possible.

HEAD

39. When a client needs to learn information about an operation, they can use HEAD. HEAD gets the HTTP header you
would get if you made a GET request, but without the body. This lets the client determine caching information, what content-
type would be returned, what status code would be returned. A HEAD request MUST be idempotent according to the

IETF RFC 2616.

[RSG-37] A HEAD request MUST be idempotent.

[RSG-38] Some proxies support only POST and GET methods. A Web APl SHOULD support a custom HTTP
request header to override the HTTP Method in order to overcome these limitations.

POST

40. When a client needs to create a resource, they can use POST. For example, the following HTTP request submits a
patent application request.

— For example, the following submits a patent application request.

Example with XML payloads based on ST.96

The clients submits the patent application request as XML:

CwWsS/8/2
Mpunoxexwue, cTp. 13

POST /vl/patents/applications HTTP/1.1

Host: wipo.int

Accept: application/xml

Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>

<pat:ApplicationBody xmlns="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:com="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:pat="http://www.wipo.int/standards/XMLSchema/ST96/Patent"
com:languageCode="pl" com:receivingOffice="ST" com:st96Version="vV3 1"
xsi:schemalocation="http://www.wipo.int/standards/XMLSchema/ST96/Patent
ApplicationBody V3 1.xsd">

</pat:ApplicationBody>

The following HTTP response is returned to denote the successful submission of the patent application:

HTTP/1.1 201 Created

Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>

<pat:ApplicationBody xmlns="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:com="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:pat="http://www.wipo.int/standards/XMLSchema/ST96/Patent"

com: languageCode="pl" com:receivingOffice="ST" com:st96Version="Vv3 1"
xsi:schemalocation="http://www.wipo.int/standards/XMLSchema/ST96/Patent
ApplicationBody V3 1.xsd" applicationBodyStatus="pending”>

</pat:ApplicationBody>

Example with JSON payloads

The clients submits the patent application request as JSON:

POST /vl/patents/applications HTTP/1.1
Host: wipo.int
Accept: application/json
Content-Type: application/json
{
"applicationBody ": {

}

The following HTTP response is returned to denote the successful submission of the patent application:

HTTP/1.1 200 OK
Content-Type: application/json

{
"applicationBody ": {
"applicationBodyStatus" : "pending",

[RSG-39] A POST request MUST NOT be idempotent according to the IETF RFC 2616.

[RSG-40] If the resource creation was successful, the HTTP header Location SHOULD contain a URI (absolute
or relative) pointing to a created resource.

CwWsS/8/2
Mpunoxexwue, ctp. 14

[RSG-41] If the resource creation was successful, the response SHOULD contain the status code “201
Created”.

[RSG-42] If the resource creation was successful, the response payload SHOULD by default contain the body of
the created resource, to allow the client to use it without making an additional HTTP call.

PUT

41. When a client needs to replace an existing resource entirely, they can use PUT. Idempotent characteristics of PUT
should be taken into account. A PUT request has an update semantic (as specified in IETF RFC 7231), and an insert
semantic.

[RSG-43] A PUT request MUST be idempotent.
[RSG-44] If a resource is not found, PUT MUST return the status code “404 Not Found”.

[RSG-45] If a resource is updated successfully, PUT MUST return the status code “200 OK” if the updated
resource is returned or a “204 No Content” if it is not returned.

PATCH

42. When a client requires a partial update, they can use PATCH. Idempotent characteristics of PATCH should be taken
into account.

— For example, the following request updates only a patent language given its number:

PATCH /api/vl/patents/publications/100000000000001 HTTP/1.1
Host: wipo.int

If-Match:456

Content-Type: application/merge-patch+json

{ "languageCode": "en" }

43. PATCH must not be idempotent according to IETF RFC 2616. In order to make it idempotent, the APl may follow
the IETF RFC 5789 suggestion of using optimistic locking.

[RSG-46] A PATCH request MUST NOT be idempotent.

[RSG-47] If a Web API implements partial updates, idempotent characteristics of PATCH SHOULD be taken into
account. In order to make it idempotent the APl MAY follow the IETF RFC 5789 suggestion of using optimistic
locking.

[RSG-48] If a resource is not found PATCH MUST return the status code “404 Not Found”.

[RSJ-49] If a Web API implements partial updates using PATCH, it MUST use the JSON Merge Patch format to
describe the partial change set, as described in IETF RFC 7386,by using the content type application/merge-
patch+json

DELETE

44, When a client needs to delete a resource, they can use DELETE. A DELETE request must not be idempotent
according to the IETF RFC 2616

[RSG-50] A DELETE request MUST NOT be idempotent.
[RSG-51] If a resource is not found, DELETE MUST return the status code “404 Not Found”.

[RSG-52] If a resource is deleted successfully, DELETE MUST return the status “200 0X” if the deleted resource
is returned or “204 No Content” ifitis not returned.

CwWsS/8/2
Mpunoxexwue, cTp. 15

TRACE

45. The TRACE method does not carry API semantics and is used for testing and diagnostic information according to
IETF RFC 2616, for example for testing a chain of proxies. TRACE allows the client to see what is being received at the
other end of the request chain and uses that data. A TRACE request MUST NOT be idempotent according to the IETF
RFC 2616.

[RSG-53] The final recipient is either the origin server or the first proxy or gateway to receive a Max-Forwards
value of zero in the request. A TRACE request MUST NOT include a body.

[RSG-54] A TRACE request MUST NOT be idempotent.
[RSG-55] The value of the via HTTP header field MUST act to track the request chain.

[RSG-56] The Max-Forwards HTTP header field MUST be used to allow the client to limit the length of the
request chain.

[RSG-57] If the request is valid, the response SHOULD contain the entire request message in the response body,
with a Content-Type of "message/http".

[RSG-58] Responses to TRACE MUST NOT be cached.
[RSG-59] The status code “200 OK” SHOULD be returned to TRACE.
OPTIONS

46. When a client needs to learn information about a Web API, they can use OPTIONS. OPTIONS do not carry API
semantics. An OPTIONS request MUST be idempotent according to the IETF RFC 2616, Custom HTTP Headers.

[RSG-60] An OPTIONS request MUST be idempotent.

47. It is a common practice for a Web API using custom HTTP headers to provide "x-" as a common prefix, which RFC
6648 deprecates and discourages to use.

[RSG-61] Custom HTTP headers starting with the “x-" prefix SHOULD NOT be used.

[RSG-62] Custom HTTP headers SHOULD NOT be used to change the behavior of HTTP Methods unless it is to
resolve any existing technical limitations (for example, see [RSG-39]).

[RSG-63] The naming convention for custom HTTP headers is <organization>-<header name>, where
<organization> and <header> SHOULD follow the kebab-case convention.

48. According to the service-oriented design principles, clients and services should evolve independently. Service
versioning enables this. Common implementations of service versioning are: Header Versioning (by using a custom
header), Query string versioning (for example ?v=v1), Media type versioning (for example Accept:
application/vnd.vl+json) and URI versioning (for example /api/v1/inventors).

[RSG-64] A Web APl SHOULD support a single method of service versioning using URI versioning, for example
/api/vl/inventors or Header versioning, for example Accept-version: vl or Media type versioning, for
example Accept: application/vnd.vl+json. Query string versioning SHOULD NOT be used.

49. According to the service-oriented design principles, service providers and consumers should also evolve
independently. The service consumer should not be affected by minor (backward compatible) changes by the service
provider. Therefore, service versioning should use only major versions. For internal non-published APIs (for example, for
development and testing) minor versions may also be used such as Semantic Versioning.

[RSG-65] A versioning-numbering scheme SHOULD be followed considering only the major version number (for
example /v1).

50. Service endpoint identifiers include information that can change over time. It may not be possible to replace all
references to an out-of-date endpoint, which can lead to the service consumer being unable to further interact with the

CwWsS/8/2
MpunoxeHwue, cTp. 16

service endpoint. Therefore, the service provider may return a redirection response. The redirection may be temporary or
permanent. The following HTTP status codes are available:

Permanent Temporary
Allows changing the request method 301 302
from POST to GET
Doesn't allow changing the request 308 307
method from POST to GET

Since 301 and 302 are more generic they are preferred to increase flexibility and overcome any unnecessary complexity.

[RSG-66] API service contracts MAY include endpoint redirection feature. When a service consumer attempts to
invoke a service, a redirection response may be returned to tell the service consumer to resend the request to a
new endpoint. Redirections MAY be temporary or permanent:

— Temporary redirect - using the HTTP response header Location and the HTTP status code “302
Found” according to IETF RFC 7231; or

— Permanent redirect - using the HTTP response header Location and the HTTP status code “301 Moved
Permanently” according to IETF RFC 7238.

51. As an APl is evolving, it will pass through a series of major phases: planning and designing, developing, testing,
deploying and retiring. Rather than providing recommendations for the time periods that an API should preferably remain in
a particular phase, it is preferable that the Organization or Service providers instead publish their API lifecycle strategy. A
template which provides the basic components which define a life cycle strategy in provided in Annex VII.

[RSG-67] API lifecycle strategies SHOULD be published by the developers to assist users in understanding how
long a version will be maintained.

Data Query Patterns

Pagination Options

52. Pagination is a mechanism for a client to retrieve data in pages. Using pagination, we prevent overwhelming the
service provider with resource demanding requests according to the design principles. The server should enforce a default
page size in case the service consumer has not specified one. Paginated requests may not be idempotent, i.e. a paginated
request does not create a snapshot of the data.

[RSG-68] A Web APl SHOULD support pagination.

[RSG-69] Paginated requests MAY NOT be idempotent.

[RSG-70] A Web API MUST use query parameters to implement pagination.
[RSG-71] A Web APl MUST NOT use HTTP headers to implement pagination.

[RSG-72] Query parameters 1imit=<number of items to deliver>and offset=<number of items
to skip> SHOULD be used, where 1imit is the number of items to be returned (page size), and skip the
number of items to be skipped (offset). If no page size limit is specified, a default SHOULD be defined - global or
per collection; the default offset MUST be zero “0”:

- For example, the following is a valid URL:

https://wipo.int/api/vl/patents?limit=10&offset=20

[RSG-73] The 1imit and the of £set parameter values SHOULD be included in the response.

CwWsS/8/2
Mpunoxexwue, ctp. 17

Sorting

53. Retrieving data may require the data to be sorted by ascending or descending order. A multi-key sorting criterion
may also be used. Sorting is determined through the use of the sort query string parameter. The value of this parameter
is a comma-separated list of sort keys and sort directions that can optionally be appended to each sort key, separated by the
colon “’ character. The supported sort directions are either ‘asc’ for ascending or ‘desc’ for descending. The client may
specify a sort direction for each key. If a sort direction is not specified for a key, then a default direction is set by the server.

For example:
(@) Only sort keys specified:
sort=keyl, key2
‘key1’ is the first key and ‘key2’ is the second key and sort directions are defaulted by the server.
(b) Some sort directions specified:
sort=keyl:asc, key2

where ‘key1l’ is the first key (ascending order) and ‘key2’ is the second key (direction defaulted by the server,
i.e. any sort key without a corresponding direction is defaulted).

(c) each keys with specified directions:
sort=keyl:asc, key2:desc
where ‘key1’ is the first key (ascending order) and ‘key2’ is the second key (descending order).

54, In order to specify multi-attribute criteria sorting, the value of a query parameter may be a comma-separated list of
sort keys and sort directions, with either ‘asc’ for ascending or ‘desc’ for descending which may be appended to each sort
key, separated by the colon ‘' character.

[RSG-74] A Web APl SHOULD support sorting.

[RSG-75] In order to specify a multi-attribute sorting criterion, a query parameter MUST be used. The value of this
parameter is a comma-separated list of sort keys and sort directions either ‘asc’ for ascending or ‘desc’ for
descending MAY be appended to each sort key, separated by the colon ‘' character. The default direction MUST
be specified by the server in case that a sort direction is not specified for a key.

[RSG-76] A Web API SHOULD return the sorting criteria in the response.
Expansion

55. A service consumer may control the amount of data it receives by expanding a single field into larger objects. This is
usually combined with Hypermedia support. Rather than simply asking for a linked entity ID to be included, a service caller
can request the full representation of the entity be expanded within the results. Service calls may use expansions to get all
the data they need in a single API request:

— For example, if Hypermedia is supported, then the following HTTP request retrieves a patent and expands its
applicant.

Retrieve a patent based on its number®:

GET /api/vl/patents/publications/100000000000001 HTTP/1.1
Host: wipo.int
Accept: application/json

8 Patent/PatentNumber.xsd

CwWsS/8/2
MpunoxeHwe, cTp. 18

The HTTP response is the following:

HTTP/1.1 200 OK
Content-Type: application/json
200 OK
{
"patentPublication": {
"bibliographicData™: {
"patentGrantIdentification": {
"patentNumber": "100000000000001"
}
by
"partyBag": {
"applicantBag": {
"applicant": {
"href": "https://wipo.int/api/v1l/link/to/applicants"
},

by

Instead of the previous request, using the following HTTP request retrieves the full applicant information of the
patent with number 200000000000001:

GET /api/vl/patents/publications?id=100000000000001sexpand=applicant HTTP/1.1
Host: wipo.int

Accept: application/json

The HTTP response is the following:

HTTP/1.1 200 OK
Content-Type: application/json
200 OK
{
"patentPublication": {
"bibliographicData": ({
"patentGrantIdentification": {
"patentNumber": "100000000000001"
}
bo
"partyBag": {
"applicantBag": {
"applicant": {
"partyIdentifier":
"applicantCategory":

by

56. A Web API may support expanding the body of returned content.

CwWsS/8/2
MpunoxeHwue, cTp. 19

[RSG-77] A Web APl MAY support expanding the body of returned content. The query parameter
expand=<comma-separated list of attributes names> SHOULD be used

Projection

57. A Web API should support field projection, which controls how much of an entity’s data is returned in response to an
API request. The field projection can decrease response time and payload size. If only specific attributes from the retrieved
data are required, a projection query parameter must be used instead of URL paths. The query parameter should be formed
as follows: “fields="<comma-separated list of attribute names>. A projection query parameter is easier to
implement and can retrieve multiple attributes. If a projection is supported, the XSD/JSON Schema should not apply in the
response since the response will not be valid against the original XSD/JSON Schema.

— For example, the following request message returns only the full name of the requested patent inventor:

In case of XML payloads

Get the patent inventor full name with the id equal to id12345:

GET /api/vl/patents/inventors/id12345?fields=fullName
Host: wipo.int
Accept: application/xml

An example for the HTTP response message is shown:

HTTP/1.1 200 OK
Content-Type: application/xml
<?xml version="1.0" encoding="UTF-8"?>
<pat:Inventor xmlns="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:com="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:pat="http://www.wipo.int/standards/XMLSchema/ST96/Patent"
com: sequenceNumber="String" com:id="ID1"
xsi:schemaLocation="http://www.wipo.int/standards/XMLSchema/ST96/Patent
PatentPublication V3 1.xsd">
<Contact>
<Name>
<PersonName>
<PersonFullName>John Smith</PersonFullName>
</PersonName>
</Name>
</Contact>
</pat:Inventor>

In case of JSON payloads

Get the patent inventor full name with the id® equal to id12345:

GET /api/vl/patents/inventors/id12345?fields=fullName
Host: wipo.int
Accept: application/json

An example for the HTTP response message is shown:

HTTP/1.1 200 OK
Content-Type: application/json
{

¢ Common/id.xsd

https://wipo.int/api/v1/inventors/id12345?fields=firstName,lastName
https://wipo.int/api/v1/inventors/id12345?fields=firstName,lastName

CwWsS/8/2
Mpunoxenwue, ctp. 20

"inventor": {
"personFullName": "John Smith"

[RSG-78] A query parameter SHOULD be used instead of URL paths in case that a Web API supports projection
following the format: “fields="<comma-separated list of attribute names>

Number of Items

58. In some use cases, the consumer of the API may be interested in the number of items in a collection. This is very
common when combined with pagination in order to know the total number of items in the collection.

— For example, the following HTTP request retrieves maximum 3 patent publications, skipping the first 4 results and
should also contain in the response the total number of the available results:

Example with XML payloads based on ST.96

GET /api/vl/patents/publications?count=true&limit=3&offset=4 HTTP/1.1
Host: wipo.int
Accept: application/xml

The following example HTTP response is returned:

HTTP/1.1 200 OK

Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"7?>

<pat:PatentPublication xmlns="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:com="http://www.wipo.int/standards/XMLSchema/ST96/Common"
xmlns:pat="http://www.wipo.int/standards/XMLSchema/ST96/Patent"
com:languageCode="de" com:st96Version="V3 1"
xsi:schemalocation="http://www.wipo.int/standards/XMLSchema/ST96/Patent
PatentPublication V3 1.xsd">

</pat:PatentPublication>
<pat:PatentPublication>

</pat:PatentPublication>
<pat:PatentPublication>

</pat:PatentPublication>
<count>100</count>

Example with JSON payloads

GET /api/vl/patents/publications?count=true&limit=3&offset=4 HTTP/1.1
Host: wipo.int
Accept: application/json

The following example HTTP response is returned:

HTTP/1.1 200 OK
Content-Type: application/json

https://wipo.int/api/v1/patents?count=true&limit=3&offset=4
https://wipo.int/api/v1/patents?count=true&limit=3&offset=4

CwWsS/8/2
Mpunoxexwue, cTp. 21

"patentPublication": [

59. As one alternative, a Web APl may support returning the number of items in a collection inline, i.e. as the part of the
response that contains the collection itself. Alternatively, it may form part of a metadata envelope, outside the main body of
the response.

[RSG-79] A Web API MUST support returning the number of items in a collection.
[RSG-80] A query parameter MUST be used to support returning the number of items in a collection.
[RSG-81] The query parameter count SHOULD be used to return the number of items in a collection.

[RSG-82] A Web API MAY support returning the number of items in a collection inline, i.e. as the part of the
response that contains the collection itself. A query parameter MUST be used.

[RSG-83] The query parameter count=true SHOULD be used. If not specified, count should be set by default
to false.

[RSG-84] If a Web API supports pagination, it SHOULD support returning inline in the response the number of the
collection (i.e. the total number of items of the collection).

Complex Search Expressions

60. For retrieving data with only a few search criteria, the query parameters are adequate. If there is a use case where
we should search for data using complex search expressions (with multiple criteria, Boolean expressions and search
operators) then the API has to be designed using a more complex query language. A query language has to be supported
by a search grammar.

61. The Contextual Query Language (CQL) is a formal language for representing queries to information retrieval
systems such as search engines, bibliographic catalogs and museum collection information. Based on the semantics of
Z39.50%°, its design objective is that queries must be readable and writable and that the language is intuitive and maintains
the expression of more complex query languages. This is just one option recommended for use, as it is used broadly by
industry.

[RSG-85] When a Web API supports complex search expressions, a query language SHOULD be specified, such
as CQL.

[RSG-86] A Service Contract MUST specify the grammar supported (such as fields, functions, keywords, and
operators).

[RSG-87] The query parameter “q” MUST be used.

Error Handling

62. Error responses should always use the appropriate HTTP status code selected from the standard list of HTTP status

codes (REC 7807), reproduced in Annex V. When the requestor is expecting JSON, return error details in a common data

10 please refer the References chapter

https://tools.ietf.org/html/rfc7807

CwWsS/8/2
Mpunoxexwue, cTp. 22

structure. Unless the project requires otherwise, there is no need to define application-specific error codes. Stack trace and
other debugging-related information should not be present in the error response body in production environments.

Error Payload

63.

Error handling is carried out on two levels: on the protocol level (HTTP) and on the application level (payload

returned). On the protocol level, a Web API returns an appropriate HTTP status code and on the application level, a Web
API returns a payload reporting the error in adequate granularity (mandatory and optional attributes).

64.

@

(b)

(©

With regard to the mandatory and optional attributes for the application level error handling,

the following code and message attributes are mandatory and while the message may change in the future, the
code will not change; it is fixed and will always refer to this particular problem:

code (integer) - Technical code of the error situation to be used for support purposes; and

message (string) - User-facing (localizable) message describing the error request as requested by the HTTP
header Accept-Language(see RSG-114).

The following attributes are conditionally mandatory:

details - If error processing requires nesting of error responses, it must use the details field for this purpose. The
details field must contain an array of JSON objects that shows code and message properties with the same
semantics as described above.

The following attributes are optional:

target - The error structure may contain a target attribute that describes a data element (for example, a resource
path);

status - Duplicate of the HTTP status code to propagate it along the call chain or to write it in the support log
without the need to explicitly add the HTTP status code every time;

moreInfo - Array of links containing more information about the error situation, for example, giving hints to the
end user; and

internalMessage — A technical message, for example, for logging purposes.

65. Error handling should follow HTTP standards (RFC 2616). A minimum error payload is recommended:

For example, the following HTTP responses is returned when trademark was not found for the provided
international registration number:

Example with XML payload based on ST.96

GET /api/vl/trademarks?irn=000000000000001John%20Smith&expiryDate=2018-12-31.
HTTP/1.1

Host: wipo.int

Accept: application/xml

The following example HTTP response is returned:

HTTP/1.1 404

Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>

<com:TransactionError xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmlns:com="http://www.wipo.int/standards/XMLSchema/ST96/Common"

xsi:schemalocation="http://www.wipo.int/standards/XMLSchema/ST96/Common

TransactionError.xsd">
<com:TransactionErrorCode>TRADEMARK NOT FOUND</com:TransactionErrorCode>
<com:TransactionErrorText>The trademark with the provided International

Registration Number was not found</com:TransactionErrorCode>

CwWsS/8/2
MpunoxeHwue, cTp. 23

</com:TransactionError>

Example with JSON Payload

HTTP/1.1 404
Content-Type: application/json
{

"error": {
"code": " TRADEMARK NOT FOUND ",
"message": " The trademark with the provided search criteria was not found",
"target": "/api/vl/trademarks?irn=000000000000001",
"details": [{

"code": "00000000000000OL"™,
"message": "The provided international registration number does
not relate to any trademark"
}]
}

[RSG-88] On the protocol level, a Web APl MUST return an appropriate HTTP status code selected from the list of
standard HTTP Status Codes.

[RSJ-89] On the application level, a Web API MUST return a payload reporting the error in adequate granularity.
The code and message attributes are mandatory, the details attribute is conditionally mandatory and target,
status, moreInfo, and internalMessage attributes are optional.

[RSG-90] Errors MUST NOT expose security-critical data or internal technical details, such as call stacks in the
error messages.

[RSG-91] The HTTP Header: Reason-Phrase (described in RFC 2616) MUST NOT be used to carry error
messages.

Correlation ID

66. Typically consuming a service cascades to triggering multiple other services. There should be a mechanism to
correlate all the service activations in the same execution context. For example, including the correlation ID in the log
messages, as this uniquely identifies the logged error. A header name should be used. e.g., Request-ID or Correlation-ID
are commonly used, as taking this into account in design phase of an API, will foster forward compatibility between different
APIs and newer implementations.

[RSG-92] Every logged error SHOULD have a unique Correlation ID. A custom HTTP header SHOULD be used
and SHOULD be named Correlation-ID.

Service Contract

67. REST is not a protocol or an architecture, but an architectural style with architectural properties and architectural
constraints. There are no official standards for REST API contracts. This Standard refers to APl documentation as a REST
Service Contract. The Service Contract is based on the following three fundamental elements:

(@) Resource identifier syntax — how can we express where the data is being transferred to or from?

(b) Methods — what are the protocol mechanisms used to transfer the data?

(c) Media types — what type of data is being transferred? Individual REST services use these elements in different
combinations to expose their capabilities. Defining a master set of these elements for use by a collection (or
inventory) of services makes this type of service contract "uniform".

[RSG-93] A Service Contract format MUST include the following:

— APl version;

CwWsS/8/2
MpunoxeHue, cTp. 24

— Information about the semantics of AP| elements;
— Resources;

— Resource attributes;

— Query Parameters;

— Methods;

— Media types;

— Search grammar (if one is supported);

— HTTP Status Codes;

— HTTP Methods;

— Restrictions and distinctive features; and
— Security (e.g. private schemas).

[RSG-94] A Service Contract format SHOULD include requests and responses in XML schema or JSON Schema
and examples of the API usage in the supported formats, i.e., XML or JSON.

[RSG-95] A REST API MUST provide APl documentation as a Service Contract.

[RSG-96] A Web API implementation deviating from this Standard MUST be explicitly documented in the Service
Contract. If a deviating rule is not specified in the Service Contract, it MUST be assumed that this Standard is
followed.

[RSG-97] A Service Contract MUST allow API client skeleton code generation.
[RSG-98] A Service Contract SHOULD allow server skeleton code generation.

68. Web API documentation can be written for example in RESTful API Modeling Language (RAML), Open API
Specification (OAS) and WSDL. As only RAML fully supports both XML and JSON request/response validation (by using
XSD schemas and JSON schemas), this Standard recommends RAML*.

[RSG-99] A Web API documentation SHOULD be written in RAML or OAS. Custom documentation formats
SHOULD NOT be used.

Time-out
69. According to the service-oriented design principles, the server usage should be limited.

[RSG-100] A Web API consumer SHOULD be able to specify a server timeout for each request; a custom HTTP
header SHOULD be used. A maximum server timeout SHOULD be also used to protect server resources from over-
use.

State Management

70. If development proceeds following the REST principles, state management must be dealt with on the client side,
rather than on the server, since REST APIs are stateless. For example, if multiple servers implement a session, replication
should be discouraged.

Response Versioning

71. Retrieving multiple times the same data set may result in bandwidth consumption if the data set has not been
modified between the requests. Data should be conditionally retrieved only if it has not been modified. This can be done
with Content-based Resource Validation or Time-based Resource Validation. If using response versioning, a service
consumer may implement optimistic locking.

[RSG-101] A Web API SHOULD support conditionally retrieving data, to ensure only data which is modified will be
retrieved. Content-based Resource Validation SHOULD be used because it is more accurate.

[RSG-102] In order to implement Content-based Resource Validation the ETag HTTP header SHOULD be used in
the response to encode the data state. Afterward, this value SHOULD be used in subsequent requests in the

11 OAS is a specification. It also supports Markdown but RAML does not. On the other hand, although both OAS and RAML support
JSON Schema validation for the requests and responses, OAS does not support XSDs. Therefore, in the future, when OAS is
feature-complete it may be recommended.

CwWsS/8/2
MpunoxeHwue, cTp. 25

conditional HTTP headers (such as If-Match or If-None-Match). If the data has not been modified since the request
returned the ETag, the server SHOULD return the status code “304 Not Modified” (if not modified). This
mechanism is specified in IETF RFC 7231 and 7232.

[RSG-103] In order to implement Time-based Resource Validation the Last-Modified HTTP header SHOULD be
used. This mechanism is specified in IETF RFC 7231 and 7232.

[RSG-104] Using response versioning, a service consumer MAY implement Optimistic Locking.

Caching

72. A Web APl implementation should support cache handling in order to save bandwidth, in compliance with the IETF
RFC 7234.

[RSG-105] A Web API MUST support caching of GET results; a Web APl MAY support caching of results from other
HTTP Methods.

[RSG-106] The HTTP response headers Cache-Control and Expires SHOULD be used. The latter MAY be
used to support legacy clients.

Managed File Transfer

73. Transferring (i.e. downloading or uploading) large files has a high probability of causing a network interruption or
some other transmission failure. It also consumes a large amount of memory for both the service provider and service
consumer. Therefore, it is recommended to transfer large files in multiple chunks with multiple requests. This option also
provides an indication of the total download or upload progress. The partial transfer of large files should resume support.
The service provider should advertise if it supports the partial transfer of large files.'?

74. There are two approaches for implementing this type of transfer: the first is to use a Transfer-Encoding:
chunked header and the second using the Content-Length header. These headers should not be used together.
Content-Length indicates the full size of the file transferred, and therefore the receiver will know the length of the body
and will be able to estimate the download completion time. The Transfer-Encoding: chunked header is useful for
streaming infinitely bounded data, such as audio or video, but not files. It is recommended to use the Content-Length
header for downloading as the server utilization is low in comparison to Transfer-Encoding: chunked. For
uploading, the Transfer-Encoding: chunked header is recommended.

A Web API should advertise if it supports partial file downloads by responding to HEAD requests and replying with the HTTP
response headers: Accept-Ranges and Content-Length. The former should indicate the unit that can be used to define
a range and should never be defined as’ none’. The latter indicates the full size of the file to download.

[RSG-107] A Web API SHOULD advertise if it supports partial file downloads by responding to HEAD requests and
replying with the HTTP response headers Accept-Ranges and Content-Length.

75. A Web API that supports downloading large files should support partial requests according to IETF RFC 7232, i.e.:

— The service consumer asking for a range should use the HTTP header Range;
— The service provider response should contain the HTTP headers Content-Range and Content-Length; and

— The service provider response should have the HTTP status 206 Partial Content in case of a successful
range request. In case of a range request that is out of bounds (range values overlap the extent of the resource),
the server responds with a “416 Requested Range Not Satisfiable” status. In case the range requested
is not supported, the “200 OK” status is sent back from a server.

[RSG-108] A Web API SHOULD support partial file downloads. Multi-part ranges SHOULD be supported.

76. Multipart ranges may also be requested if the HTTP header Content-Type: multipart/byteranges;
boundary=XXXxX is used. A range request may be conditional if it is combined with ETag or If-Range HTTP Headers.

12 The service provider may return the location of the file and then the service consumer can call a directory service to download the
file. At the end, a partial file download is required. This paragraph does not take into account non-REST protocols such as FTP or
SFTP or rsync.

CwWsS/8/2
MpunoxeHwue, cTp. 26

77. There is not any IETF RFC for large files upload. Therefore, in this Standard we do not provide any implementation
recommendation for large file uploads.

[RSG-109] A Web API SHOULD advertise if it supports partial file uploads.
[RSG-110] A Web API SHOULD support partial file uploaded. Multi-part ranges SHOULD be supported.

78. The IETF RFC 2616 does not impose any specific size limit for requests. The API Service Contract should specify
the maximum limit for the requests. Moreover, on runtime the service provider should indicate to the service consumer if the
allowed maximum limit has been exceeded.

[RSG-111] The service provider SHOULD return with HTTP response headers the HTTP header “413 Request
Entity Too Large” in case the request has exceeded the maximum allowed limit. A custom HTTP header MAY

be used to indicate the maximum size of the request.

Preference Handling

79. A service provider may allow a service consumer to configure values and influence how the former processes the
requests of the latter. A standard means for implementing preference handling is outlined in IETF RFC 7240.

[RSG-112] If a Web API supports preference handling, it SHOULD be implemented according to IETF RFC 7240, i.e.
the request HTTP header Prefer SHOULD be used and the response HTTP header Preference-Applied
SHOULD be returned (echoing the original request).

[RSG-113] If a Web API supports preference handling, the nomenclature of preferences that MAY be set by using
the Prefer header MUST be recorded in the Service Contract.

Translation

80. A service consumer may request responses in a specific language if the service provider supports it. A standard
specification for handling of a set of natural languages is outlined in IETF TFC 7231.

[RSG-114] If a Web API supports localized data, the request HTTP header Accept-Language MUST be supported
to indicate the set of natural languages that are preferred in the response as specified in IETF RFC 7231.

Long-Running Operations

81. There are cases, where a Web API may involve long running operations. For instance, the generation of a PDF by
the service provider may take some minutes. This paragraph recommends a typical message exchange pattern to
implement such cases, for example:

// (a)
GET https://wipo.int/api/vl/patents
Accept: application/pdf

// (D)
HTTP/1.1 202 Accepted
Location: https://wipo.int/api/vl/queues/12345

// (cl)
GET https://wipo.int/api/vl/queues/12345

HTTP/1.1 200 OK

// (c2)

GET https://wipo.int/api/vl/queues/12345
HTTP/1.1 303 See Other

Location: https://wipo.int/api/vl/path/to/pdf

/) (e3)
GET https://wipo.int/api/vl/path/to/pdf

CwWsS/8/2
Mpunoxexwue, cTp. 27

82. If an API supports long-running operations, then they should be performed asynchronously to ensure the user is not
made to wait for a response. The rule below sets out a recommended approach for implementation.

[RSG-115] If the API supports long-running operations, they SHOULD be asynchronous. The following approach
SHOULD be followed:

(&) The service consumer activates the service operation;

(b) The service operation returns the status code “202 Accepted” according to IETF RFC 7231 (section 6.3.3),
i.e. the request has been accepted for processing but the processing has not been completed. The location of
the queued task that was created is also returned with the HTTP header Location; and

(c) The service consumer calls the returned Location to learn if the resource is available. If the resource is not
available, the response SHOULD have the status code “200 OK”, contain the task status (for example pending)
and MAY contain other information (for example, a progress indicator, and/or a link to cancel or delete the task
using the DELETE HTTP method). If the resource is available, the response SHOULD have the status code
“303 See Other” and the HTTP header Location SHOULD contain the URL to retrieve the task results.

Security Model

General Rules

83. Within the scope of this standard, API security is concerned with pivotal security attributes that will ensure that
information accessible by an API and APIs themselves are secure throughout their lifecycle. These attributes are
confidentiality, integrity, availability, trust, non-repudiation, compartmentalization, authentication, authorization and auditing.

[RSG-116] Confidentiality: APIs and API Information MUST be identified, classified, and protected against
unauthorized access, disclosure and eavesdropping at all times. The least privilege, zero trust, need to know and
need to share® principles MUST be followed.

[RSG-117] Integrity-Assurance: APIs and API Information MUST be protected against unauthorized modification,
duplication, corruption and destruction. Information MUST be modified through approved transactions and
interfaces. Systems MUST be updated using approved configuration management, change management and
patch management processes.

[RSG-118] Availability: APIs and API Information MUST be available to authorized users at the right time as
defined in the Service Level Agreements (SLAS), access-control policies and defined business processes.

[RSG-119] Non-repudiation: Every transaction processed or action performed by APIs MUST enforce non-
repudiation through the implementation of proper auditing, authorization, authentication, and the implementation of
secure paths and non-repudiation services and mechanisms.

[RSG-120] Authentication, Authorization, Auditing: Users, systems, APIs or devices involved in critical transactions
or actions MUST be authenticated, authorized using role-based or attribute based access-control services and
maintain segregation of duty. In addition, all actions MUST be logged and the authentication’s strength must
increase with the associated information risk.

Guidelines for secure and threat-resistant APl management

84. APIs should be designed, built, tested, and implemented with security requirements and risks in mind. The
appropriate countermeasures and controls should be built directly into the design and not as an after-thought. Itis
recommended to use best practices and standards, such as OWASP.

[RSG-121] While developing APIs, threats, malicious use cases, secure coding techniques, transport layer security
and security testing MUST be carefully considered, especially:

— PUTs and POSTs —i.e.: which change to internal data could potentially be used to attack or misinform;

— DELETES —i.e.: could be used to remove the contents of an internal resource repository;

— Whitelist allowable methods- to ensure that allowable HTTP Methods are properly restricted while others
would return a proper response code; and

13 https://www.owasp.org/index.php/Security by Design_Principles

https://www.owasp.org/index.php/Security_by_Design_Principles

CwWsS/8/2
MpunoxeHue, cTp. 28

— Well known attacks should be considered during the threat-modeling phase of the design process to ensure
that the threat risk does not increase. The threats and mitigation defined within OWASP Top Ten Cheat
Sheet!* MUST be taken into consideration.

[RSG-122] While developing APIs, the standards and best practices listed below SHOULD be followed:

— Secure coding best practices: OWASP Secure Coding Principles;

— Rest API security: REST Security Cheat Sheet;

— Escape inputs and cross site scripting protection: OWASP XSS Cheat Sheet;

— SQL Injection prevention: OWASP SQL Injection Cheat Sheet, OWASP Parameterization
Cheat Sheet; and

— Transport layer security: OWASP Transport Layer Protection Cheat Sheet.

[RSG-123] Security testing and vulnerability assessment MUST be carried out to ensure that APIs are secure and
threat-resistant. This requirement MAY be achieved by leveraging Static and Dynamic Application Security Testing
(SAST/DAST), automated vulnerability management tools and penetration testing.

Encryption, Integrity and non-repudiation

85. Protected services must be secured to protect authentication credentials in transit: for example, passwords, API keys or
JSON Web Tokens. Integrity of the transmitted data and non-repudiation of action taken should also be guaranteed.
Secure cryptographic mechanisms can ensure confidentiality, encryption, integrity assurance and non-repudiation.
Perfect forward secrecy is one means of ensuring that session keys cannot be compromised.

[RSG-124] Protected services MUST only provide HTTPS endpoints using TLS 1.2, or higher, with a cipher suite
that includes ECDHE for key exchange.

[RSG-125] When considering authentication protocols, perfect forward secrecy SHOULD be used to provide
transport security. The use of insecure cryptographic algorithms and backwards compatibility to SSL 3 and TLS
1.0/1.1 SHOULD NOT be allowed.

[RSG-126] For maximum security and trust, a site-to-site IPSEC VPN SHOULD be established to further protect
the information transmitted over insecure networks.

[RSG-127] The consuming application SHOULD validate the TLS certificate chain when making requests to
protected resources, including checking the certificate revocation list.

[RSG-128] Protected services SHOULD only use valid certificates issued by a trusted certificate authority (CA).

[RSG-129] Tokens SHOULD be signed using secure signing algorithms that are compliant with the digital
signature standard (DSS) FIPS —186-4. The RSA digital signature algorithm or the ECDSA algorithm SHOULD be
considered.

Authentication and Authorization

86. Authorization is the act of performing access control on a resource. Authorization does not just cover the
enforcement of access controls, but also the definition of those controls. This includes the access rules and policies, which
should define the required level of access agreeable to both provider and consuming application. The foundation of access
control is a provider granting or denying a consuming application and/or consumer access to a resource to a certain level of
granularity. Coarse-grained access should be considered at the API or the API gateway request point while fine-grained
control should be considered at the backend service, if possible. Role Based Access Control (RBAC) or the Attribute Based
Access Control (ABAC) model can be considered.

87. If a service is protected, then Open ID Connect should be favored over OAuth 2.0 because it fills many of the gaps of
the latter and provides a standardized way to gain a resource owner's profile data, JSON Web Token (JWT) standardized
token format and cryptography. Other security schemes should not be used such as HTTP Basic Authorization which
requires that the client must keep a password somewhere in clear text to send along with each request. Also the verification
of this password would be slower because it will have to access the credential store. OAuth 2.0 does not specify the
security token. Therefore, the JIWT token should be used in comparison for example to SAML 2.0, which is more verbose.

14 https://www.owasp.org/index.php/Top_10-2017_Top_10

https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/Secure_Coding_Principles
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Top_10-2017_Top_10

CwWsS/8/2
MpunoxeHwue, cTp. 29

[RSG-130] Anonymous authentication MUST only be used when the customers and the application they are using
accesses information or feature with a low sensitivity level which should not require authentication, such as, public
information.

[RSG-131] Username and password or password hash authentication MUST NOT be allowed.
[RSG-132] If a service is protected, Open ID Connect SHOULD be used.

[RSG-133] Where a JSON Web Token (JWT) is used, a JWT secret SHOULD possess high entropy to increase the
work factor of a brute force attack; token TTL and RTTL SHOULD be as short as possible; and sensitive information
SHOULD NOT be stored in the JWT payload.

88. A common security design choice is to centralize user authentication. It should be stored in an Identity Provider (IdP)
or locally at REST endpoints.

89. Services should be careful to prevent leaking of credentials. Passwords, security tokens, and API keys should not
appear in the URL, as this can be captured in web server logs, which makes them intrinsically valuable. For example, the
following is incorrect (APl Key in URL): https://wipo.int/api/patents?apiKey=a53f435643de32.

[RSG-134] In POST/PUT requests, sensitive data SHOULD be transferred in the request body or by request
headers.

[RSG-135] In GET requests, sensitive data SHOULD be transferred in an HTTP Header.

[RSG-136] In order to minimize latency and reduce coupling between protected services, the access control
decision SHOULD be taken locally by REST endpoints.

90. API Keys Authentication: API keys should be used wherever system-to-system authentication is required and they
should be automatically and randomly generated. The inherent risk of this authentication mode is that anyone with a copy of
the API key can use it as though they were the legitimate consuming application. Hence, all communications should comply
with RSG-124, to protect the key in transit. The onus is on the application developer to properly protect their copy of the API
key. If the API key is embedded into the consuming application, it can be decompiled and extracted. If stored in plain text
files, they can be stolen and re-used for malicious purposes. An APl Key must therefore be protected by a credential store
or a secret management mechanism. API Keys may be used to control services usage even for public services.

[RSG-137] API Keys SHOULD be used for protected and public services to prevent overwhelming their service
provider with multiple requests (denial-of-service attacks). For protected services APl Keys MAY be used for
monetization (purchased plans), usage policy enforcement (QoS) and monitoring.

[RSG-138] API Keys MAY be combined with the HTTP request header user-agent to discern between a human user
and a software agent as specified in IETF RFC 7231.

[RSG-139] The service provider SHOULD return along with HTTP response headers the current usage status. The
following response data MAY be returned:

— rate limit - rate limit (per minute) as set in the system;

— rate limit remaining - remaining amount of requests allowed during the current time slot (-1 indicates that the
limit has been exceeded); and

— rate limit reset - time (in seconds) remaining until the request counter will be reset.

[RSG-140] The service provider SHOULD return the status code “429 Too Many Requests” if requests are
coming in too quickly.

[RSG-141] API Keys MUST be revoked if the client violates the usage agreement, as specified by the IPO.

[RSG-142] API Keys SHOULD be transferred using custom HTTP headers. They SHOULD NOT be transferred
using query parameters.

[RSG-143] API Keys SHOULD be randomly generated.

91. While there is an overhead with the use of public key cryptography and certificates, certificate-based mutual
authentication should be used when a Web API requires stronger authentication than offered by API keys to provide
additional security. Secure and trusted certificates must be issued by a mutually trusted certificate authority (CA) through a
trust establishment process or cross-certification. To mitigate identity security risks peculiar to sensitive systems and

https://wipo.int/api/patents?apiKey=a53f435643de32

CwWsS/8/2
Mpunoxenwue, ctp. 30

privileged actions, strong authentication can be leveraged. Certificates shared between the client and the server should be
used, for example X.509.

[RSG-144] Secure and trusted certificates MUST be issued by a mutually trusted certificate authority (CA) through a
trust establishment process or cross-certification.

[RSG-145] Certificates shared between the client and the server SHOULD be used to mitigate identity security risks
particular to sensitive systems and privileged actions, for example X.509.

[RSG-146] For highly privileged services, two-way mutual authentication between the client and the server SHOULD
use certificates to provide additional protection.

[RSG-147] Multi-factor authentication SHOULD be implemented to mitigate identity risks for application with a high-
risk profile, a system processing very sensitive information or a privileged action.

Availability and threat protection

92. Availability in this context covers threat protection to minimize APl downtime, looking at how threats against exposed
APIs can be mitigated using basic design principles. Availability also covers scaling to meet demand and ensuring the
hosting environments are stable etc. These levels of availability are addressed across the hardware and software stacks
that support the delivery of APIs. Availability is normally addressed under business continuity and disaster recovery
standards that recommend a risk assessment approach to define the availability requirements.

Cross-domain Requests

93. Certain "cross-domain” requests, notably Ajax requests, are forbidden by default by the same-origin security policy.
Under the same-origin policy, a web browser permits scripts contained in a first web page to access data in a second web
page, only if both web pages have the same origin (i.e. combination of URI scheme, host name, and port number).

94, The Cross-Origin Resource Sharing (CORS) is a W3C standard to flexibly specify which Cross-Domain Requests
are permitted. By delivering appropriate CORS HTTP headers, your REST API signals to the browser which domains or
origins are allowed to make JavaScript calls to the REST service.

95. The JSON with padding (JSONP) is a method for sending JSON data without worrying about cross-domain request
issues. Itintroduces callback functions for the loading of JSON data from different domains. The idea behind it is based on
the fact that the HTML <script> tag is not affected by the same origin policy. Anything imported through this tag is
executed immediately in the global context. Instead of passing in a JavaScript file, one can pass in a URL to a service that
returns JavaScript code.

96. The following approaches are usually followed to bypass this restriction:

— JSONP is a workaround for cross-domain requests. It does not offer any error-detection mechanism, i.e. if
there was an issue and the service failed or responded with an HTTP error, there is no way to determine what
the issue was on the client side. The result will be that the AJAX application will just ‘hang’. Moreover, the
site that uses JSONP will unconditionally trust the JSON provided from a different domain;

— Iframe is an alternative workaround for cross-domain requests. Using the JavaScript window.postMessage
(message, targetOrigin) method on the iframe object, it is possible to pass a request a site of a
different domain. Iframe approach has good compatibility even in old browsers. Moreover, it only supports
GET. The source of the Iframes page should be always be checked due to security issues; and

— CORS is a standardized approach to perform a call to an external domain. It can use XMLHttpRequest to
send and receive data and has better error handling mechanism than JSONP. It supports many types of
authorization in comparison to JSONP, which only supports cookies. It also supports HTTP Methods in
comparison to JSONP, which only supports GET. On the other hand, it is not always possible to implement
CORS because the browsers have to support it and because the APl consumers have to be enlisted in the
CORS whitelist.

[RSG-148] If the REST APl is public, the HTTP header Access-Control-Allow-Origin MUST be set to .

[RSG-149] If the REST APl is protected, CORS SHOULD be used, if possible. Else, JSONP MAY be used as
fallback but only for GET requests, for example, when the user is accessing using an old browser. Iframe SHOULD
NOT be used.

CwWsS/8/2
Mpunoxexwue, ctp. 31

API Maturity Model

97. It is common to classify a REST API using a maturity model. While various models are available, this Standard
refers to the Richardson Maturity Model (RMM). RMM defines three levels and this Standard recommends Level 2 for REST
API because Level 3 is complex to implement and requires significant conceptual and development-related investment from
service providers and consumers. At the same time, it does not immediately benefit service consumers.

98. If a Web APl implements Level 3 of RMM, a hypermedia format must be put in place. Hypertext Application
Language (HAL)'® is simple and is compatible with JSON and XML responses. However it is only a draft recommendation,
along with other hypermedia formats, such as JSON-LD?. JSON-Schema?’ should be used because as although there is
currently no specification for Level 3 of RMM, this is considered the most mature. The following hypermedia formats should
not be considered: IETF RFC 5988 and Collection+JSON.,

99. It is recommended that instances described by a schema provide a link to a downloadable JSON Schema using the link
relation "describedby”, as defined by Linked Data Protocol 1.0, section 8.1 [W3C.REC-Idp-20150226]*8.

In HTTP, such links can be attached to any response using the Link header [RFC8288]. An example of such a header
would be:

Link: <http://example.com/my-hyper-schema#>; rel="describedby"

[RSJ-150] If using instances described a schema, the Link header SHOULD be used to provide a link to a
downloadable JSON schema ACCORDING TO RFC8288.

[RSJ-151] A Web APl SHOULD implement at least Level 2 (Transport Native Properties) of RMM. Level 3
(Hypermedia) MAY be implemented to make the APl completely discoverable.

100. A custom hypermedia format may be designed. In which case, a set of attributes is recommended. For example:

"link": {
"href": "/patents",
"rel": "self"

by

[RSJ-152] For designing a custom hypermedia format the following set of attributes SHOULD be used enclosed into an
attribute link:

— href —the target URI;

— rel —the meaning of the target URI;

— self —the URI references the resource itself;

— next —the URI references the previous page (if used during pagination);

— previous —the URI references the next page (if used during pagination); and
— arbitrary name v denotes the custom meaning of a relation.

SOAP WEB API

101. This standard recommends the REST architectural style as the preferred approach to APl design. RESTful
architectures are generally simpler to design, extend, integrate than SOAP. Coverage of SOAP is included here for
completeness; examples and use cases are not provided.

15 https://tools.ietf.org/html/draft-kelly-json-hal-08t

16 https://www.w3.org/TR/json-ld/

7 https://ison-schema.org/specification.html#specification-documents
18 http://json-schema.org/latest/json-schema-core.html#hypermedia

https://tools.ietf.org/html/draft-kelly-json-hal-08t
https://www.w3.org/TR/json-ld/
https://json-schema.org/specification.html#specification-documents
http://json-schema.org/latest/json-schema-core.html#hypermedia

CwWsS/8/2
Mpunoxexwue, ctp. 32

102. A SOAP Web APl is a software application identified by URI, whose interfaces and binding are capable of being
defined, described, and discovered by XML artifacts. It also supports direct interactions with other software applications
using XML-based messages, via internet protocols such as SOAP and HTTP.

103. A SOAP-based contract is described in a Web Service Definition Language (WSDL), a W3C standard document.
Throughout this document “Web Service Contract WSDL document” will be referred as just “WSDL”.

104. When creating web services, there are two development styles: Contract Last and Contract First. When using a
contract-last approach, you start with the code, and let the web service contract be generated from that. When using
contract-first, you start with the WSDL contract, and use code to implement said contract.

General Rules

105. The Web Service Interoperability (WS-I) Profile is one of the most important standards in regards to SOAP-based
APIs, and it provides a minimum foundation for writing Web Services that can work together. WS-I provides a guideline on
how services are “exposed” to each other and how they transfer information (referred to as ‘messaging’). It is a profile for
implementing specific versions of some of the most important Web Service standards such as WSDL, SOAP, XML, etc.
Adhering to certain profiles implicitly indicates adhering to specific versions of these Web Services standards. WS-I Basic
Profile v1.1 provides guidance for using XML 1.0, HTTP 1.1, UDDI, SOAP 1.1, WSDL 1.1, and UDDI 2.0. WS-I| Basic Profile
2.0 provides guidance for using SOAP 1.2, WSDL 1.1, UDDI 2.0, WS-Addressing, and MTOM. SOAP 1.2 provides a clear
processing model and leads to better interoperability. WSDL 2.0 was designed to solve the interoperability issues found in
WSDL 1.1 by using improved SOAP 1.2 bindings.

[WS-01] All WSDLs MUST conform to WS-I Basic Profile 2.0. WSDL 1.2 MAY be used.

106. A WSDL SOAP binding can be either a Remote Procedure Call (RPC) style binding or a document-style binding. A
SOAP binding can also have an encoded use or a literal use. This gives you five style/use models: RPC/encoded,
RPClliteral, document/encoded, document/literal, document/literal wrapped.

[WS-02] Services MUST follow document-style binding and literal use models (either document/literal or
document/literal wrapped). When there are graphs, the RPC/encoded style MUST be used.

[WS-03] When there are exceptional use cases, such as when there are overloaded operations in the WSDL, all
the other styles SHOULD be used.

107. The concrete WSDL should be separated from the abstract WSDL in order to provide a more modular and flexible
interface. The abstract WSDL defines data types, messages, operation, and the port type. The concrete WSDL defines the
binding, port and service.

[WS-04] The WSDL SHOULD be separated into an abstract and a concrete part.
[WS-05] All data types SHOULD be defined in an XSD file and imported in the abstract WSDL.
[WS-06] The concrete WSDL MUST define only one service with one port.

Schemas

108. Schemas used in the WSDL must be compliant with WIPO Standard ST.96 Standard. For re-use purposes and
modularity, a schema must be a separate document that is either included or imported into the WSDL, instead of defining
directly it in the WSDL. This will permit changes in XML structure without changing the WSDL.

[WS-07] The schema defined in the wsdl: types element MUST be imported from a self-standing schema file, to
allow modularity and re-use.

[WS-08] Import of an external schema MUST be implemented using an xsd: import technique, not an
xsd:include.

[WS-09] Element xsd: any MUST NOT be used to specify a root element in the message body.

[WS-10] The target namespace for the WSDL (attribute targetNamespace on wsdl:definitions) MUST be
different from the target namespace of the schema (attribute targetNamespace 0n xsd: schema).

CwWsS/8/2
Mpunoxexwue, ctp. 33

[WS-11] The requests and responses (naming convention, message format, data structure, and data dictionary)
SHOULD follow WIPO Standard ST.96.

Naming and Versioning

109. Appropriate naming conventions should also be applied when naming Services and WSDL elements. Naming
conventions should follow those implemented in WIPO Standard ST.96.

[WS-12] Services MUST be named in UpperCamelCase and have a 'Service' suffix, for example
https://wipo.int/PatentsService

[WS-13] WSDL elements message, part, portType, operation, input, output, and binding SHOULD be named in
UpperCamelCase.

[WS-14] Request message nhames SHOULD have a ‘Request’ suffix.
[WS-15] Response message names SHOULD have a ‘Response’ suffix.

[WS-16] Operation names SHOULD follow the format of <Verb><Object>{<Qualifier>}, where <verb>
indicates the operation (preferably Get, Create, Update, or Delete where applicable) on the <Object> of the
operation, optionally finally followed by a <Qualifier> of the <Object>.

110. All operation names will have at least two parts. An optional third part may be included to further clarify and/or
specify the business purpose of the operation. The three parts are: <Verb> <Object> <Qualifier - Optional>.
Each part will be described in detail below.

Verb — Each operation name will start with a verb. The verb examples in common usage are described below:

Verb Description Example
Get Get a single object GetBibData
Create Get a new object CreateBibData
Update Update an object UpdateBibData
Delete Delete an object DeleteCustomer

Object — A noun following a verb will be a succinct and unambiguous description of the business function the
operation is providing. The goal is to provide consumers with a better understanding of what the operation does
with no ambiguity. Given that the definition of some entities are not common across the various cost centers, the
object may be a composite field with the first node being the cost center and the second node the entity, for
example, PatentCustomer.

Qualifier — The purpose of the object qualifier (optional) attribute is, to further clarify the business domain or
subject area, for example, GetCustomerList. Get denotes the operation to be acted upon the Customer and
List further describes the fact that the intention is to get a list of Customers not just one customer as in
GetCustomer.

111. According to the service-oriented design principles, service providers and consumers should evolve independently.
The service consumer should not be affected from minor (backward compatible) changes by the service provider.
Therefore, service versioning should use only major version numbers. For internal APIs (for example, for development and
testing) minor versions may also be used such as Semantic Versioning.

[WS-17] The name of the WSDL file SHOULD conform the following pattern: <service name> V<major
version number>

[WS-18] The namespace of the WSDL file SHOULD contain the service version; for
example https://wipo.int/PatentsService/V1”

112. The description of service and its operations is provided as WSDL documentation.

[WS-19] Element wsdl :documentation SHOULD be used in WSDL with description of service (as the first child
of wsdl:definitions in the WSDL) and its operations.

CwWsS/8/2
MpunoxeHwue, ctp. 34

Web Service Contract Design

113. A Web Service Contract should include a technical interface comprised of a Web Service Definition Language
(WSDL), XML Schema definitions, WS-Policy descriptions as well as a non-technical interface comprised of one or more
service description documents.

114. The WSDL, part of the “Service Contract,” must be designed prior to any code development. No WSDL should ever
be auto-generated from the code. The motto is “Contract First” and NOT “Code First”. All Web Service Contracts must
conform to Web Service Interoperability Basic Profile (WS-1 BP). Any project that auto-generates from code will be liable to
amendments to ensure conformance to these standards.

Attaching Policies to WSDL Definitions

115. Web Service Contracts can be extended with security policies that express additional constraints, requirements, and
qualities that typically relate to the behaviors of services. Security policies can be human-readable and become part of a
supplemental service-level agreement, or can be machine-readable processed at runtime. Machine-readable policies are
defined using the WS-Policy language and related WS-Policy specifications.

[WS-20] Policy expressions MUST be isolated into a separate WS-Policy definition document, which is then
referenced within the WSDL document via the wsp: PolicyReference element.

[WS-21] Global or domain-specific policies SHOULD be isolated and applied to multiple services.

[WS-22] Policy attachment points SHOULD conform the WSDL 1.1 or later version, preferably version 2.0,
attachment point elements and corresponding policy subjects (service, endpoint, operation, and message).

SOAP — Web Service Security

116. Web Services Security (WSS): SOAP Message Security is a set of enhancements to SOAP messaging that provides
message integrity and confidentiality. WSS: SOAP Message Security is extensible, and can accommodate a variety of
security models and encryption technologies. WSS: SOAP Message Security provides three main mechanisms that can be
used independently or together:

— The ability to send security tokens as part of a message, and for associating the security tokens with message

content;
— The ability to protect the contents of a message from unauthorized and undetected modification (message

integrity); and
— The ability to protect the contents of a message from unauthorized disclosure (message confidentiality).

WSS: SOAP Message Security can be used in conjunction with other Web service extensions and application-specific
protocols to satisfy a variety of security requirements.

[WS-23] Web Services using SOAP message SHOULD be protected accordance with WSS:SOAP Standard
recommendations.

DATA TYPE FORMATS

117. This Standard recommends primitive data type formats such as time, date and language to be consistent with the
recommendations of WIPO Standard ST.96 which are used both for XML and JSON requests and responses and for query

parameters.
[CS-01] Time objects MUST be formatted as specified in IETF RFC 3339 (it is a profile of ISO 8601).
[CS-02] Time zone information SHOULD be used as specified in IETF RFC 3339. For example: 20:54:21+00:00

[CS-03] Date objects MUST be formatted as specified in IETF RFC 3339 (it is a profile of ISO 8601). For example:
2018-10-19

[CS-04] Datetime (i.e. timestamp) objects MUST be formatted as specified in IETF RFC 3339 (it is a profile of ISO
8601).

[CS-05] The relevant time zone SHOULD be used as specified in IETF RFC 3339. For example: 2017-02-
14T20:54:21+00:00

CwWsS/8/2
Mpunoxexwue, ctp. 35

[CS-06] ISO 4217-Alpha (3-Letter Currency Codes) MUST be used for Currency Codes. The precision of the value
(i.e. number of digits after the decimal point) MAY vary depending on the business requirements.

[CS-07] WIPO Standard ST.3 two-letter codes be used for representing IPOs, states, other entities, organizations
and for priority and designated countries/organizations.

[CS-08] ISO 3166-1-Alpha-2 Code Elements (2 letter country codes) MUST be used for the representation of the
names of countries, dependencies, and other areas of particular geopolitical interest, on the basis of lists of country
names obtained from the United Nations.

[CS-09] ISO 639-1 (2-Letter Language Codes) MUST be used for Language Codes.

[CS-10] Units of Measure SHOULD use the units of measure as described in The Unified Code for Units of Measure
(based on ISO 80000 definitions). For example, for weight measuring using kilograms (kg)

[CSJ-11] Characters used in enumeration values MUST be restricted to the following set: {a-z, A-Z, 0-9, period (.),
comma (,), spaces (), dash (-) and underscore ().

[CSJ-12] The Representational Terms in Annex VI MUST be used for atomic property names.

[CSJ-13] Acronyms and abbreviations appearing at the beginning of a property name MUST be in lower case.
Otherwise all values of an enumeration, acronyms and abbreviation values MUST appear in upper case.

CONFORMANCE

118. This Standard is designed as a set of design rules and conventions that can be layered on top of existing or new
Web Service APIs to provide common functionality. Not all services will support all of the conventions defined in the
Standard due to business (for example, QoS may not be required) or technical constraints (for example, OAuth 2.0 may
already be used).

119. This Standard defines two levels of conformance: A and AA Conformance Levels. Note that rules indicates by MAY
are not considered important when determining conformance.

120. The Web Service APIs are encouraged to support as much additional functionality beyond their level of conformance
as is appropriate for their intended scenario.

121. Two conformance levels are defined:

— Level A: For Level A conformance, the API indicates that the required general design rules (RSG), which are
identified as ‘MUST’ in this Standard, are followed. In addition, the rules specific to the type of response
returned must also be complied with, In other words, the following conformance sub-level are indicated:

o Level AJ: returning a JSON response, must comply with all general level rules (RSG) identified
as MUST as well as all JSON specific rules (RSJ) identified as MUST;

o Level AX: returning an ST.96 XML instance, must comply with all general level rules (RSG)
identified as MUST as well as all XML specific rules (RSX) identified as MUST; and

o Level A: returning either a JSON or XML response, must comply with all general level rules
(RSG) identified as MUST as well as all JISON specific rules (RSJ) identified as MUST and all
XML specific rules (RSX) identified as MUST.

— Level AA: For Level AA conformance, the API indicates that is Level A compliant and all the recommended
design rules, which are identified as ‘SHOULD’ in this Standard, are followed. As with Level A, there are sub-
levels dependent upon the type of response:

o Level AAJ: Level AJ compliance as well as the recommended SHOULD rules applicable to a
JSON response; and

o Level AAX: Level AX compliance as well as the recommended SHOULD rules applicable to an
XML response.

122. The traceability matric between the design rules and the conformance levels is listed in Annex |.

CWS/8/2
MpunoxeHwue, ctp. 36
REFERENCES
WIPOQO Standards
ST.3 — “Two-letter codes for the representation of states, other entities and organizations”

WIPO ST.96 — “Processing of Industrial Property information using XML”

Standards and Conventions

— |IEFT RFC 2119: Key words for use in RFCs to Indicate Requirement Levels — www.ietf.org/rfc/rfc2119.txt

— |EFT RFC 3339: Date and Time on the Internet: Timestamps — www.ietf.org/rfc/rfc3339.txt

— |EFT RFC 3986: Uniform Resource Identifier (URI): Generic Syntax — www.ietf.org/rfc/rfc3986.txt

— |EFT RFC 5789: PATCH Method for HTTP — https://tools.ietf.org/rfc/rfc5789.txt

— IEFT RFC 5988: Web Linking — https://tools.ietf.org/rfc/rfc5988.txt

— IEFT RFC 6648: Deprecating the "X-" Prefix and Similar Constructs in Application Protocols
— https://tools.ietf.org/rfc/rfc6648.txt

— |EFT RFC 6750: The OAuth 2.0 Authorization Framework: Bearer Token Usage
— https://tools.ietf.org/rfc/rfc6750.txt

— |EFT RFC 7231: Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content
— www.ietf.org/rfc/rfc7231.txt

— |EFT RFC 7232: Hypertext Transfer Protocol (HTTP/1.1) — Conditional Requests www.ietf.org/rfc/rfc7232.txt

— |EFT RFC 7234: Hypertext Transfer Protocol (HTTP/1.1) — Caching www.ietf.org/rfc/rfc7234.txt

— |EFT RFC 7386: JSON Merge Patch — www.ietf.org/rfc/rfc7386.txt.

— |EFT RFC 7240: Prefer Header for HTTP — https://tools.ietf.org/rfc/rfc7240.txt

— |EFT RFC 7519: JSON Web Token — www.ietf.org/rfc/rfc7519.txt

— |EFT RFC 7540: Hypertext Transfer Protocol Version 2 (HTTP/2) — https://tools.ietf.org/html/rfc7540

— |EFT BCP-47: Tags for Identifying Languages — https://tools.ietf.org/rfc/bcp/bcp47 .txt.

— IS0 639-1: Language codes — https://en.wikipedia.org/wiki/List_of ISO_639-1_codes

— IS0 3166-1 alpha-2: Two-letter acronyms for country codes — https://en.wikipedia.org/wiki/ISO_3166-1_alpha-
2

— IS0 3166-1 alpha-3: Three-letter acronyms for country codes — https://en.wikipedia.org/wiki/ISO_3166-
1_alpha-3

— IS0 4217: Currency Codes — www.iso.org/iso/lhome/standards/currency_codes.htm

— IS0 8601: Date and Time Formats — https://en.wikipedia.org/wiki/ISO_8601

— OData - https://www.odata.org/

— OASIS OData Metadata Service Entity Model — http://docs.oasis-
open.org/odata/odata/v4.0/os/models/MetadataService.edmx.

— OASIS OData JSON Format Version 4.0. Edited by Ralf Handl, Michael Pizzo, and Mark Biamonte. Latest
version — http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html.

— OASIS OData Atom Format Version 4.0. Edited by Martin Zurmuehl, Michael Pizzo, and Ralf Handl. Latest
version — http://docs.oasis-open.org/odata/odata-atom-format/v4.0/odata-atom-format-v4.0.html.

— OASIS OData "OData Version 4.0 Part 1: Protocol— http://docs.oasis-open.org/odata/odata/v4.0/os/part1-
protocol/odata-v4.0-0s-part1-protocol.html.

— OASIS OData Version 4.0 Part 2: URL Conventions — http://docs.oasis-open.org/odata/odata/v4.0/os/part2-
url-conventions/odata-v4.0-os-part2-url-conventions.html.

— OASIS OData Version 4.0 Part 3: Common Schema Definition Language (CSDL) — http://docs.oasis-
open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html.

— OASIS ABNF components: OData ABNF Construction Rules Version 4.0 and OData ABNF Test
Cases — http://docs.oasis-open.org/odata/odata/v4.0/os/abnf/

— OASIS Vocabulary components: OData Core Vocabulary, OData Measures Vocabulary and OData
Capabilities Vocabulary — http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/

— OASIS XML schemas: OData EDMX XML Schema and OData EDM XML Schema-— http://docs.oasis-
open.org/odata/odata/v4.0/os/schemas/

— OASIS SAML 2.0 - http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html

— RAML (ReSTful APl Modeling Language) — http://raml.org

— OpenAPI Initiative — www.openapis.org

— Richardson’s REST API Maturity Model — https://martinfowler.com/articles/richardsonMaturityModel.html

— HAL - http://stateless.co/hal_specification.html

— JSON-LD - https://json-Id.org

— Collection+JSON - Document Format — http://amundsen.com/media-types/collection/format/

— BadgerFish — http://badgerfish.ning.com/

— Semantic Versioning — https://semver.org/

— REST - https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

— CQL - https://en.wikipedia.org/wiki/Contextual_Query_Language

— Z39.50 — https://www.loc.gov/z3950/agency/Z239-50-2003.pdf

— WS-l Basic Profile 2.0 — http://ws-i.org/profiles/basicprofile-2.0-2010-11-09.html

— W3C SOAP 1.2 Part 1: Messaging Framework — https://www.w3.0org/TR/soap12-partl/

— W3C SOAP 1.2 Part 2: Adjuncts — https://www.w3.0rg/TR/soap12-part2/

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc3339.txt
http://www.ietf.org/rfc/rfc3986.txt
https://tools.ietf.org/rfc/rfc5789.txt
https://tools.ietf.org/rfc/rfc5988.txt
https://tools.ietf.org/rfc/rfc6648.txt
https://tools.ietf.org/rfc/rfc6750.txt
http://www.ietf.org/rfc/rfc7231.txt
http://www.ietf.org/rfc/rfc7232.txt
http://www.ietf.org/rfc/rfc7234.txt
http://www.ietf.org/rfc/rfc7386.txt
https://tools.ietf.org/rfc/rfc7240.txt
http://www.ietf.org/rfc/rfc7519.txt
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/rfc/bcp/bcp47.txt
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3
http://www.iso.org/iso/home/standards/currency_codes.htm
https://en.wikipedia.org/wiki/ISO_8601
https://www.odata.org/
http://docs.oasis-open.org/odata/odata/v4.0/os/models/MetadataService.edmx
http://docs.oasis-open.org/odata/odata/v4.0/os/models/MetadataService.edmx
http://docs.oasis-open.org/odata/odata-json-format/v4.0/odata-json-format-v4.0.html
http://docs.oasis-open.org/odata/odata-atom-format/v4.0/odata-atom-format-v4.0.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html
http://docs.oasis-open.org/odata/odata/v4.0/os/abnf/
http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/
http://docs.oasis-open.org/odata/odata/v4.0/os/schemas/
http://docs.oasis-open.org/odata/odata/v4.0/os/schemas/
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
http://raml.org/
http://www.openapis.org/
https://martinfowler.com/articles/richardsonMaturityModel.html
http://stateless.co/hal_specification.html
https://json-ld.org/
http://amundsen.com/media-types/collection/format/
http://badgerfish.ning.com/
https://semver.org/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://en.wikipedia.org/wiki/Contextual_Query_Language
https://www.loc.gov/z3950/agency/Z39-50-2003.pdf
http://ws-i.org/profiles/basicprofile-2.0-2010-11-09.html
https://www.w3.org/TR/soap12-part1/
https://www.w3.org/TR/soap12-part2/

CwWsS/8/2
Mpunoxenwue, ctp. 37

W3C WSDL Version 2.0 Part 1: Core Language — https://www.w3.org/TR/wsdI20/
W3C CORS - https://lwww.w3.org/TR/cors/
W3C Matric Parameters — https://www.w3.org/Designlssues/MatrixURIs.html

IP Offices’ REST APlIs

EPO — Open Patent Services OPS v 3.2 https://developers.epo.org

USPTO — PatentsView http://www.patentsview.org/api/doc.html

WIPO — ePCTv1.1 https://pct.wipo.int/

EUIPO — TMview, Designview, TMclass http://www.tm-xml.org/TM-XML/TM-XML_xml/TM-XML_TM-
Search.xml

Industry REST APIs and Design Guidelines

Others

Facebook — https://developers.facebook.com/docs/graph-api/reference

GitHub — https://developer.github.com/v3

Google APIs Design Guide — https://cloud.google.com/apis/design/

Azure — https://docs.microsoft.com/en-us/rest/api/

OpenAPI — https://swagger.io/docs/specification/about/

OData — http://www.odata.org/documentation/

JSON API — http://jsonapi.org/format/

Microsoft API Design — https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design
JIRA REST API — https://developer.atlassian.com/serverl/jira/platform/jira-rest-api-examples
Confluece REST API — https://developer.atlassian.com/server/confluence/

Ebay API — https://developer.ebay.com/api-docs/static/ebay-rest-landing.html

Oracle REST Data Services — http://www.oracle.com/technetwork/developer-tools/rest-data-
services/overview/index.html

PayPal REST API — https://developer.paypal.com/docs/api/overview/

Data on the Web Best Practices — https://www.w3.org/TR/dwbp/#intro

SAP Guidelines for Future REST API Harmonization

— https://d.dam.sap.com/m/xAUymP/54014_GB_54014_enUS.pdf

GitHub API — https://developer.github.com/v3/

Zalando - https://github.com/zalando/ReSTful-api-guidelines

Dropbox — https://www.dropbox.com/developers

Twitter — https://developer.twitter.com/en/docs

CQRS - https://martinfowler.com/bliki/ CQRS.html

ITU — https://www.itu.int/en/ITU-T/ipr/Pages/open.aspx

OWASP Rest Security Cheat Sheet — https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
DDD - https://martinfowler.com/bliki/BoundedContext.html

REST Principles — https://en.wikipedia.org/wiki/Representational_state_transfer

Open/Closed Principle — https://en.wikipedia.org/wiki/Open/closed_principle

Which style of WSDL should | use? — https://www.ibm.com/developerworks/library/ws-whichwsdl/
https://www.ict.govt.nz/guidance-and-resources/standards-compliance/api-standard-and-guidelines/
http://www.sabsa.org/node/69

https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Security_by_Design_Principles
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_API_Security_Project
https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://nvipubs.nist.gov/nistpubs/fips/nist.fips.186-4.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

SOA Principles of Service Design, Thomas Erl (2008)

[Annex | of ST.XX follows]

https://www.w3.org/TR/wsdl20/
https://www.w3.org/TR/cors/
https://www.w3.org/DesignIssues/MatrixURIs.html
https://developers.epo.org/
http://www.patentsview.org/api/doc.html
https://pct.wipo.int/
http://www.tm-xml.org/TM-XML/TM-XML_xml/TM-XML_TM-Search.xml
http://www.tm-xml.org/TM-XML/TM-XML_xml/TM-XML_TM-Search.xml
https://developers.facebook.com/docs/graph-api/reference
https://developer.github.com/v3
https://cloud.google.com/apis/design/
https://docs.microsoft.com/en-us/rest/api/
https://swagger.io/docs/specification/about/
http://www.odata.org/documentation/
http://jsonapi.org/format/
https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design
https://developer.atlassian.com/server/jira/platform/jira-rest-api-examples/#getting-metadata-for-creating-issues-examples
https://developer.atlassian.com/server/confluence/
https://developer.ebay.com/api-docs/static/ebay-rest-landing.html
http://www.oracle.com/technetwork/developer-tools/rest-data-services/overview/index.html
http://www.oracle.com/technetwork/developer-tools/rest-data-services/overview/index.html
https://developer.paypal.com/docs/api/overview/
https://www.w3.org/TR/dwbp/#intro
https://d.dam.sap.com/m/xAUymP/54014_GB_54014_enUS.pdf
https://developer.github.com/v3/
https://github.com/zalando/restful-api-guidelines
https://www.dropbox.com/developers
https://developer.twitter.com/en/docs
https://martinfowler.com/bliki/CQRS.html
https://www.itu.int/en/ITU-T/ipr/Pages/open.aspx
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://martinfowler.com/bliki/BoundedContext.html
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Open/closed_principle
https://www.ibm.com/developerworks/library/ws-whichwsdl/
https://www.ict.govt.nz/guidance-and-resources/standards-compliance/api-standard-and-guidelines/
http://www.sabsa.org/node/69
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Security_by_Design_Principles
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_API_Security_Project
https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.186-4.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

ANNEX |

CWsS/8/2

MpunoxeHwue, cTp. 38

LIST OF RESTFUL WEB SERVICE DESIGN RULES AND CONVENTIONS

Final Draft

Proposal by the API Task Force for consideration at the CWS/8

The following tables summarize service design rules and conventions, and identifies basic conformance requirements in
terms of which conformance level, Web Services APl implementation support. The following is a guide to the tables below:

Table 1 provides a summary of rules that must be complied with in order to achieve a Level AJ compliance
(for a JSON response);

— Table 2 provides a summary of design rules that must be complied with in order to achieve a Level AX compliance
(for an XML response) ;

— Table 3 provides a summary of design rules that must be complied with in order to achieve a Level AAJ

compliance (for a JSON response); and
— Table 4 provides a summary of design rules that must be complied with in order to achieve a Level AAX
compliance (for an XML response).

[Editorial Note: In order achieve a Level A compliance, it is just necessary to follow rules in both Tables 1 and 2. In order to
achieve a Level AA compliance, it is necessary to follow rules in both Tables 3 and 4. The third letter indicates the type of
response provided.]

Table 1: Conformance Table JSON response

Rule ID Rule description Cross reference and remark

[RSG-01] The forward slash character “/” MUST be used in the path of the URI to
indicate a hierarchical relationship between resources but the path
MUST NOT end with a forward slash as it does not provide any AJ, AX, AAJ, AAX
semantic value and may cause confusion.

[RSG-02] Resources name MUST be consistent in their naming pattern. AJ, AX, AAJ, AAX

[RSG-04 Query parameters MUST be consistent in their naming pattern AJ, AX

[RSG-06] The URL pattern for a Web API MUST contain the word “api” in the URI. | AJ, AX, AAJ, AAX

[RSG-07] Matrix parameters MUST NOT be used. AJ, AX, AAJ, AAX

[RSG-08] A Web API MUST consistently apply HTTP status codes as described in | AJ, AX, AAJ, AAX
IETF RFCs

[RSG-10] If the API detects invalid input values, it MUST return the HTTP status AJ, AX, AAJ, AAX
code “400 Bad Request”. The error payload MUST indicate the
erroneous value.

[RSG-12] If the API detects valid values that require features to not be AJ, AX, AAJ, AAX
implemented, it MUST return the HTTP status code “501 Not
Implemented”. The error payload MUST indicate the unhandled value.

[RSG-14] If a resource can be stand-alone it MUST be a top-level resource, or AJ, AX, AAJ, AAX
otherwise a sub-resource.

[RSG-15] Query parameters MUST be used instead of URL paths to retrieve AJ, AX, AAJ, AAX
nested resources.

[RSG-18] Resource names, segment and query parameters MUST be composed AJ, AX, AAJ, AAX
of words in the English language, using the primary English spellings
provided in the Oxford English Dictionary. Resource names that are
localized due to business requirements MAY be in other languages.

[RSG-20] A Web API MUST support content type negotiation following IETF RFC AJ, AX, AAJ, AAX
7231.

[RSG-21] JSON format MUST be assumed when no specific content type is AJ, AX, AAJ, AAX
requested.

[RSG-27] A Web APl MUST support at least XML or JSON. AJ, AX, AAJ, AAX

CWsS/8/2

MpunoxeHwue, ctp. 39

[RSG-28] HTTP Methods MUST be restricted to the HTTP standard methods AJ, AX, AAJ, AAX
POST, GET, PUT, DELETE, OPTIONS, PATCH, TRACE and HEAD, as
specified in IETF RFC 7231 and 5789.
[RSG-33] For an end point which fetches a single resource, if a resource is not AJ, AX, AAJ, AAX
found, the method GET MUST return the status code “404 Not
Found”. Endpoints which return lists of resources will simply return an
empty list.
[RSG-34] If a resource is retrieved successfully, the GET method MUST return AJ, AX, AAJ, AAX
200 OK.
[RSG-35] A GET request MUST be idempotent. AJ, AX, AAJ, AAX
[RSG-37] A HEAD request MUST be idempotent. AJ, AX, AAJ, AAX
[RSG-39] A POST request MUST NOT be idempotent according to the IETF AJ, AX, AAJ, AAX
RFC 2616.
[RSG-43] A PUT request MUST be idempotent. AJ, AX, AAJ, AAX
[RSG-44] If a resource is not found, PUT MUST return the status code “404 Not AJ, AX, AAJ, AAX
Found”.
[RSG-45] If a resource is updated successfully, PUT MUST return the status code AJ, AX, AAJ, AAX
“200 OK” if the updated resource is returned or a “204 No Content” if
it is not returned.
[RSG-46] A PATCH request MUST NOT be idempotent. AJ, AX, AAJ, AAX
[RSG-48] If a resource is not found PATCH MUST return the status code “404 AJ, AX, AAJ, AAX
Not Found’.
[RSJ-49] If a Web APl implements partial updates using PATCH, it MUST use the AJ, AAJ
JSON Merge Patch format to describe the partial change set, as
described in IETF RFC 7386 (by using the content type
application/merge-patch+json).
[RSG-50] A DELETE request MUST NOT be idempotent. AJ, AX, AAJ, AAX
[RSG-51] If a resource is not found, DELETE MUST return the status code “404 AJ, AX, AAJ, AAX
Not Found”.
[RSG-52] If a resource is deleted successfully, DELETE MUST return the status AJ, AX, AAJ, AAX
“200 OK’” if the deleted resource is returned or “204 No Content” ifit
is not returned.
[RSG-53] The final recipient is either the origin server or the first proxy or gateway | AJ, AX, AAJ, AAX
to receive a Max-Forwards value of zero in the request. A TRACE
request MUST NOT include a body.
[RSG-54] A TRACE request MUST NOT be idempotent. AJ, AX, AAJ, AAX
[RSG-55] The value of the via HTTP header field MUST act to track the request AJ, AX, AAJ, AAX
chain.
[RSG-56] The Max-Forwards HTTP header field MUST be used to allow the client | AJ, AX, AAJ, AAX
to limit the length of the request chain.
[RSG-58] Responses to TRACE MUST NOT be cached. AJ, AX, AAJ, AAX
[RSG-60] An OPTIONS request MUST be idempotent. AJ, AX, AAJ, AAX
[RSG-70] A Web API MUST use query parameters to implement pagination. AJ, AX, AAJ, AAX
[RSG-71] A Web API MUST NOT use HTTP headers to implement pagination. AJ, AX, AAJ, AAX
[RSG-75] In order to specify a multi-attribute sorting criterion, a query parameter AJ, AX, AAJ, AAX
MUST be used. The value of this parameter is a comma-separated list
of sort keys and sort directions either ‘asc’ for ascending or ‘desc’ for
descending MAY be appended to each sort key, separated by the colon
‘.’ character. The default direction MUST be specified by the server in
case that a sort direction is not specified for a key.
[RSG-76] A Web API SHOULD return the sorting criteria in the response. AJ, AX, AAJ, AAX
[RSG-79] A Web API MUST support returning the number of items in a collection. AJ, AX, AAJ, AAX
[RSG-80] A query parameter MUST be used to support returning the number of AJ, AX, AAJ, AAX
items in a collection.
[RSG-82] A Web API MAY support returning the number of items in a collection AJ, AX, AAJ, AAX
inline, i.e. as the part of the response that contains the collection itself. A
query parameter MUST be used.
[RSG-86] A Service Contract MUST specify the grammar supported (such as AJ, AX, AAJ, AAX

fields, functions, keywords, and operators).

CWsS/8/2

MpunoxeHwue, cTp. 40

[RSG-87]

The query parameter “q” MUST be used.

AJ, AX, AAJ, AAX

[RSG-88]

On the protocol level, a Web APl MUST return an appropriate HTTP
status code selected from the list of standard HTTP Status Codes.

AJ, AX, AAJ, AAX

[RSJ-89]

On the application level, a Web API MUST return a payload reporting
the error in adequate granularity. The code and message attributes are
mandatory, the details attribute is conditionally mandatory and target,
status, moreInfo, and internalMessage attributes are optional.

AJ, AX, AAJ, AAX

[RSG-90]

Errors MUST NOT expose security-critical data or internal technical
details, such as call stacks in the error messages.

AJ, AX, AAJ, AAX

[RSG-91]

The HTTP Header: Reason-Phrase (described in RFC 2616) MUST
NOT be used to carry error messages.

AJ, AX, AAJ, AAX

[RSG-93]

A Service Contract format MUST include the following:
— APl version;

— Information about the semantics of API
elements;

— Resources;

— Resource attributes;

— Query Parameters;

— Methods;

— Media types;

— Search grammar (if one is supported);

— HTTP Status Codes;

— HTTP Methods;

— Restrictions and distinctive features; and
— Security (if any).

AJ, AX, AAJ, AAX

[RSG-95]

A REST API MUST provide APl documentation as a Service Contract.

AJ, AX, AAJ, AAX

[RSG-96]

A Web API implementation deviating from this Standard MUST

be explicitly documented in the Service Contract. If a deviating rule is
not specified in the Service Contract, it MUST be assumed that this
Standard is followed.

AJ, AX, AAJ, AAX

[RSG-97]

A Service Contract MUST allow API client skeleton code generation.

AJ, AX, AAJ, AAX

[RSG-105]

A Web APl MUST support caching of GET results; a Web APl MAY
support caching of results from other HTTP Methods.

AJ, AX, AAJ

[RSG-113]

If a Web API supports preference handling, the nomenclature of
preferences that MAY be set by using the Prefer header MUST be
recorded in the Service Contract.

AAJ, AAX, AJ, AX

[RSG-114]

If a Web API supports localized data, the request HTTP header
Accept-Language MUST be supported to indicate the set of natural
languages that are preferred in the response as specified in IETF RFC
7231.

AJ, AX, AAJ, AAX

[RSG-116]

Confidentiality: APIs and API Information MUST be identified, classified,
and protected against unauthorized access, disclosure and
eavesdropping at all times. The least privilege, zero trust, need to know
and need to share' principles MUST be followed.

AJ, AX, AAJ, AAX

[RSG-117]

Integrity-Assurance: APIs and API Information MUST be protected
against unauthorized modification, duplication, corruption and
destruction. Information MUST be modified through approved
transactions and interfaces. Systems MUST be updated using approved
configuration management, change management and patch
management processes.

AJ, AX, AAJ, AAX

[RSG-118]

Availability: APIs and API Information MUST be available to authorized
users at the right time as defined in the Service Level Agreements
(SLAs), access-control policies and defined business processes.

AJ, AX, AAJ, AAX

[RSG-119]

Non-repudiation: Every transaction processed or action performed by
APIs MUST enforce non-repudiation through the implementation of
proper auditing, authorization, authentication, and the implementation of
secure paths and non-repudiation services and mechanisms.

AJ, AX, AAJ, AAX

[RSG-120]

Authentication, Authorization, Auditing: Users, systems, APIs or devices
involved in critical transactions or actions MUST be authenticated,
authorized using role-based or attribute based access-control services
and maintain segregation of duty. In addition, all actions MUST be
logged and the authentication’s strength must increase with the
associated information risk.

AJ, AX, AAJ, AAX

CWsS/8/2

Mpunoxexwue, cTp. 41

[RSG-121]

While developing APIs, threats, malicious use cases, secure coding
techniques, transport layer security and security testing MUST be
carefully considered, especially:

— PUTs and POSTs —i.e.: which change to internal data
could potentially be used to attack or misinform;

— DELETES —i.e.: could be used to remove the contents of
an internal resource repository;

— Whitelist allowable methods- to ensure that allowable
HTTP Methods are properly restricted while others would
return a proper response code; and

— Well known attacks should be considered during the
threat-modeling phase of the design process to ensure
that the threat risk does not increase. The threats and
mitigation defined within OWASP Top Ten Cheat
Sheet MUST be taken into consideration.

AJ, AX, AAJ, AAX

[RSG-122]

While developing APIs, the standards and best practices listed below
SHOULD be followed:

— Secure coding best practices: OWASP Secure Coding
Principles;

— Rest API security: REST Security Cheat Sheet

— Escape inputs and cross site scripting protection: OWASP
XSS Cheat Sheet;

— SQL Injection prevention: OWASP SQL Injection Cheat
Sheet, OWASP Parameterization Cheat Sheet; and

— Transport layer security: OWASP Transport Layer
Protection Cheat Sheet.

AJ, AX, AAX, AAJ

[RSG-123]

Security testing and vulnerability assessment MUST be carried out to
ensure that APIs are secure and threat-resistant. This requirement MAY
be achieved by leveraging Static and Dynamic Application Security
Testing (SAST/DAST), automated vulnerability management tools and
penetration testing.

AJ, AX, AAX, AAJ

[RSG-124]

Protected services MUST only provide HTTPS endpoints using TLS 1.2,
or higher, with a cipher suite that includes ECDHE for key exchange.

AJ, AX, AAJ, AAX

[RSG-130]

Anonymous authentication MUST only be used when the customers and
the application they are using accesses information or feature with a low
sensitivity level which should not require authentication, such as, public
information.

AJ, AX, AAJ, AAX

[RSG-131]

Username and password or password hash authentication MUST NOT
be allowed.

AJ, AX, AAJ, AAX

[RSG-141]

API Keys MUST be revoked if the client violates the usage agreement,
as specified by the IP Office.

AJ, AX, AAJ, AAX

[RSG-144]

Secure and trusted certificates MUST be issued by a mutually trusted
certificate authority (CA) through a trust establishment process or cross-
certification.

AJ, AX, AAJ, AAX

[RSG-145]

Certificates shared between the client and the server SHOULD be used
to mitigate identity security risks particular to sensitive systems and
privileged actions, for example X.509.

AJ, AX, AAJ, AAX

[RSG-148]

If the REST APl is public, the HTTP header Access-Control-Allow-Origin
MUST be set to ™.

AJ, AX, AAJ, AAX

Table 2: Conformance Table XML response

IETF RFCs

Rule ID Rule description Cross reference and remark
[RSG-01] The forward slash character “/” MUST be used in the path of the URI to
indicate a hierarchical relationship between resources but the path
MUST NOT end with a forward slash as it does not provide any AJ, AX, AAJ, AAX
semantic value and may cause confusion.
[RSG-02] Resources name MUST be consistent in their naming pattern. AJ, AX, AAJ, AAX
[RSG-04] Query parameters MUST be consistent in their naming pattern AJ, AX
[RSG-06] The URL pattern for a Web APl MUST contain the word “api” in the URI. | AJ, AX, AAJ, AAX
[RSG-07] Matrix parameters MUST NOT be used. AJ, AX, AAJ, AAX
[RSG-08] A Web API MUST consistently apply HTTP status codes as described in | AJ, AX, AAJ, AAX

https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/Secure_Coding_Principles
https://www.owasp.org/index.php/Secure_Coding_Principles
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

CWsS/8/2

MpunoxeHwue, cTp. 42

[RSG-10] If the API detects invalid input values, it MUST return the HTTP status AJ, AX, AAJ, AAX
code “400 Bad Request”. The error payload MUST indicate the
erroneous value.

[RSG-12] If the API detects valid values that require features to not be AJ, AX, AAJ, AAX
implemented, it MUST return the HTTP status code “501 Not
Implemented”. The error payload MUST indicate the unhandled value.

[RSG-14] If a resource can be stand-alone it MUST be a top-level resource, or AJ, AX, AAJ, AAX
otherwise a sub-resource.

[RSG-15] Query parameters MUST be used instead of URL paths to retrieve AJ, AX, AAJ, AAX
nested resources.

[RSG-18] Resource names, segment and query parameters MUST be composed AJ, AX, AAJ, AAX
of words in the English language, using the primary English spellings
provided in the Oxford English Dictionary. Resource names that are
localized due to business requirements MAY be in other languages.

[RSG-20] A Web API MUST support content type negotiation following IETF RFC AJ, AX, AAJ, AAX
7231.

[RSG-21] JSON format MUST be assumed when no specific content type is AJ, AX, AAJ, AAX
requested.

[RSG-27] A Web APl MUST support at least XML or JSON. AJ, AX, AAJ, AAX

[RSG-28] HTTP Methods MUST be restricted to the HTTP standard methods AJ, AX, AAJ, AAX
POST, GET, PUT, DELETE, OPTIONS, PATCH, TRACE and HEAD, as
specified in IETF RFC 7231 and 5789.

[RSG-33] For an end point which fetches a single resource, if a resource is not AJ, AX, AAJ, AAX
found, the method GET MUST return the status code “404 Not
Found”. Endpoints which return lists of resources will simply return an
empty list.

[RSG-34] If a resource is retrieved successfully, the GET method MUST return AJ, AX, AAJ, AAX
200 OK.

[RSG-35] A GET request MUST be idempotent. AJ, AX, AAJ, AAX

[RSG-37] A HEAD request MUST be idempotent. AJ, AX, AAJ, AAX

[RSG-39] A POST request MUST NOT be idempotent according to the IETF AJ, AX, AAJ, AAX
RFC 2616.

[RSG-43] A PUT request MUST be idempotent. AJ, AX, AAJ, AAX

[RSG-44] If a resource is not found, PUT MUST return the status code “404 Not AJ, AX, AAJ, AAX
Found”.

[RSG-45] If a resource is updated successfully, PUT MUST return the status code | AJ, AX, AAJ, AAX
“200 OK” if the updated resource is returned or a “204 No Content” if
it is not returned.

[RSG-46] A PATCH request MUST NOT be idempotent. AJ, AX, AAJ, AAX

[RSG-48] If a resource is not found PATCH MUST return the status code “404 AJ, AX, AAJ, AAX
Not Found”.

[RSG-50] A DELETE request MUST NOT be idempotent. AJ, AX, AAJ, AAX

[RSG-51] If a resource is not found, DELETE MUST return the status code “404 AJ, AX, AAJ, AAX
Not Found”.

[RSG-52] If a resource is deleted successfully, DELETE MUST return the status AJ, AX, AAJ, AAX
“200 OK” if the deleted resource is returned or “204 No Content” ifit
is not returned.

[RSG-53] The final recipient is either the origin server or the first proxy or gateway | AJ, AX, AAJ, AAX
to receive a Max-Forwards value of zero in the request. A TRACE
request MUST NOT include a body.

[RSG-54] A TRACE request MUST NOT be idempotent. AJ, AX, AAJ, AAX

[RSG-55] The value of the via HTTP header field MUST act to track the request AJ, AX, AAJ, AAX
chain.

[RSG-56] The Max-Forwards HTTP header field MUST be used to allow the client | AJ, AX, AAJ, AAX
to limit the length of the request chain.

[RSG-58] Responses to TRACE MUST NOT be cached. AJ, AX, AAJ, AAX

[RSG-60] An OPTIONS request MUST be idempotent. AJ, AX, AAJ, AAX

[RSG-70]

A Web API MUST use query parameters to implement pagination.

AJ, AX, AAJ, AAX

CWsS/8/2

Mpunoxexwue, cTp. 43

[RSG-71]

A Web API MUST NOT use HTTP headers to implement pagination.

AJ, AX, AAJ, AAX

[RSG-75]

In order to specify a multi-attribute sorting criterion, a query parameter
MUST be used. The value of this parameter is a comma-separated list
of sort keys and sort directions either ‘asc’ for ascending or ‘desc’ for
descending MAY be appended to each sort key, separated by the colon
‘.’ character. The default direction MUST be specified by the server in
case that a sort direction is not specified for a key.

AJ, AX, AAJ, AAX

[RSG-76]

A Web API SHOULD return the sorting criteria in the response.

AJ, AX, AAJ, AAX

[RSG-79]

A Web APl MUST support returning the number of items in a collection.

AJ, AX, AAJ, AAX

[RSG-80]

A query parameter MUST be used to support returning the number of
items in a collection.

AJ, AX, AAJ, AAX

[RSG-82]

A Web API MAY support returning the number of items in a collection
inline, i.e. as the part of the response that contains the collection itself. A
query parameter MUST be used.

AJ, AX, AAJ, AAX

[RSG-86]

A Service Contract MUST specify the grammar supported (such as
fields, functions, keywords, and operators).

AJ, AX, AAJ, AAX

[RSG-87]

The query parameter “q” MUST be used.

AJ, AX, AAJ, AAX

[RSG-88]

On the protocol level, a Web API MUST return an appropriate HTTP
status code selected from the list of standard HTTP Status Codes.

AJ, AX, AAJ, AAX

[RSJ-89]

On the application level, a Web API MUST return a payload reporting
the error in adequate granularity. The code and message attributes are
mandatory, the details attribute is conditionally mandatory and target,
status, moreInfo, and internalMessage attributes are optional.

AJ, AX, AAJ, AAX

[RSG-90]

Errors MUST NOT expose security-critical data or internal technical
details, such as call stacks in the error messages.

AJ, AX, AAJ, AAX

[RSG-91]

The HTTP Header: Reason-Phrase (described in RFC 2616) MUST
NOT be used to carry error messages.

AJ, AX, AAJ, AAX

[RSG-93]

A Service Contract format MUST include the following:

— APl version;

— Information about the semantics of API
elements;

— Resources;

— Resource attributes;

— Query Parameters;

— Methods;

— Media types;

— Search grammar (if one is supported);

— HTTP Status Codes;

— HTTP Methods;

— Restrictions and distinctive features; and
Security (if any).

AJ, AX, AAJ, AAX

[RSG-95]

A REST API MUST provide API documentation as a Service Contract.

AJ, AX, AAJ, AAX

[RSG-96]

A Web API implementation deviating from this Standard MUST

be explicitly documented in the Service Contract. If a deviating rule is
not specified in the Service Contract, it MUST be assumed that this
Standard is followed.

AJ, AX, AAJ, AAX

[RSG-97]

A Service Contract MUST allow API client skeleton code generation.

AJ, AX, AAJ, AAX

[RSG-105]

A Web APl MUST support caching of GET results; a Web APl MAY
support caching of results from other HTTP Methods.

AJ, AX, AAJ

[RSG-113]

If a Web API supports preference handling, the nomenclature of
preferences that MAY be set by using the Prefer header MUST be
recorded in the Service Contract.

AAJ, AAX, AJ, AX

[RSG-114]

If a Web API supports localized data, the request HTTP header
Accept-Language MUST be supported to indicate the set of natural
languages that are preferred in the response as specified in IETF RFC
7231.

AAJ, AAX, AJ, AX

[RSG-116]

Confidentiality: APIs and API Information MUST be identified, classified,
and protected against unauthorized access, disclosure and
eavesdropping at all times. The least privilege, zero trust, need to know
and need to share principles MUST be followed.

AAJ, AAX, AJ, AX

[RSG-117]

Integrity-Assurance: APIs and API Information MUST be protected
against unauthorized modification, duplication, corruption and

AAJ, AAX, AJ, AX

CWsS/8/2

MpunoxeHwue, cTp. 44

destruction. Information MUST be modified through approved
transactions and interfaces. Systems MUST be updated using approved
configuration management, change management and patch
management processes.

[RSG-118]

Availability: APls and API Information MUST be available to authorized
users at the right time as defined in the Service Level Agreements
(SLAs), access-control policies and defined business processes.

AAJ, AAX, AJ, AX

[RSG-119]

Non-repudiation: Every transaction processed or action performed by
APIs MUST enforce non-repudiation through the implementation of
proper auditing, authorization, authentication, and the implementation of
secure paths and non-repudiation services and mechanisms.

AAJ, AAX, AJ, AX

[RSG-120]

Authentication, Authorization, Auditing: Users, systems, APIs or devices
involved in critical transactions or actions MUST be authenticated,
authorized using role-based or attribute based access-control services
and maintain segregation of duty. In addition, all actions MUST be
logged and the authentication’s strength must increase with the
associated information risk.

AAJ, AAX, AJ, AX

[RSG-121]

While developing APIs, threats, malicious use cases, secure coding
techniques, transport layer security and security testing MUST be
carefully considered, especially:

— PUTs and POSTs —i.e.: which change to internal data
could potentially be used to attack or misinform;

— DELETES —i.e.: could be used to remove the contents of
an internal resource repository;

— Whitelist allowable methods- to ensure that allowable
HTTP Methods are properly restricted while others would
return a proper response code; and

— Well known attacks should be considered during the
threat-modeling phase of the design process to ensure
that the threat risk does not increase. The threats and
mitigation defined within OWASP Top Ten Cheat
Sheet MUST be taken into consideration.

AAJ, AAX, AJ, AX

[RSG-122]

While developing APls, the standards and best practices listed below
SHOULD be followed:

— Secure coding best practices: OWASP Secure Coding
Principles;

— Rest API security: REST Security Cheat Sheet;

— Escape inputs and cross site scripting protection: OWASP
XSS Cheat Sheet;

— SQL Injection prevention: OWASP SQL Injection Cheat
Sheet, OWASP Parameterization Cheat Sheet; and

— Transport layer security: OWASP Transport Layer
Protection Cheat Sheet.

AJ, AX, AAX, AAJ

[RSG-123]

Security testing and vulnerability assessment MUST be carried out to
ensure that APIs are secure and threat-resistant. This requirement MAY
be achieved by leveraging Static and Dynamic Application Security
Testing (SAST/DAST), automated vulnerability management tools and
penetration testing.

AJ, AX, AAJ, AAX

[RSG-124]

Protected services MUST only provide HTTPS endpoints using TLS 1.2,
or higher, with a cipher suite that includes ECDHE for key exchange.

AJ, AX, AAJ, AAX

[RSG-130]

Anonymous authentication MUST only be used when the customers and
the application they are using accesses information or feature with a low
sensitivity level which should not require authentication, such as, public
information.

AJ, AX, AAJ, AAX

[RSG-131]

Username and password or password hash authentication MUST NOT
be allowed.

AJ, AX, AAJ, AAX

[RSG-141]

API Keys MUST be revoked if the client violates the usage agreement,
as specified by the IP Office.

AJ, AX, AAJ, AAX

[RSG-144]

Secure and trusted certificates MUST be issued by a mutually trusted
certificate authority (CA) through a trust establishment process or cross-
certification.

AJ, AX, AAJ, AAX

[RSG-145]

Certificates shared between the client and the server SHOULD be used
to mitigate identity security risks particular to sensitive systems and
privileged actions, for example X.509.

AJ, AX, AAJ, AAX

[RSG-148]

If the REST APl is public, the HTTP header Access-Control-Allow-Origin
MUST be set to ™.

AJ, AX, AAJ, AAX

https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/Secure_Coding_Principles
https://www.owasp.org/index.php/Secure_Coding_Principles
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

Table 3: Conformance Table Level AAJ

CWsS/8/2

MpunoxeHwue, cTp. 45

limitations, a Web APl MAY use a POST method with a custom HTTP
header “tunneling” the real HTTP method. The custom HTTP header x-
HTTP-Method SHOULD be used.

Rule ID Rule Cross reference and remark
[RSG-01] The forward slash character “/” MUST be used in the path of the URI to AAJ, AAX, AX, AJ
indicate a hierarchical relationship between resources but the path
MUST NOT end with a forward slash as it does not provide any
semantic value and may cause confusion.
[RSG-02] Resources name MUST be consistent in their naming pattern. AAJ, AAX, AX, AJ
[RSG-03] Resource names SHOULD use lowercase or kebab-case naming AAJ, AAX
conventions. Resources name MAY be abbreviated.
[RSG-05] Query parameters SHOULD use the lowerCamelCase convention. AAJ, AAX
Query parameter MAY be abbreviated.
[RSG-06] The URL pattern for a Web API MUST contain the word “api” in the URI. | AAJ, AAX, AX, AJ
[RSG-07] Matrix parameters MUST NOT be used. AAJ, AAX, AX, AJ
[RSG-08] A Web API MUST consistently apply HTTP status codes as described in | AAJ, AAX, AX, AJ
IETF RFCs
[RSG-09] The recommended codes in Annex V SHOULD be used by a Web API AAX, AAJ
to classify the error.
[RSG-10] If the API detects invalid input values, it MUST return the HTTP status AAJ, AAX, AX, AJ
code “400 Bad Request”. The error payload MUST indicate the
erroneous value.
[RSG-11] If the API detects syntactically correct argument names (in the request AAJ, AAX
or query parameters) that are not expected, it SHOULD ignore them.
[RSG-12] If the API detects valid values that require features to not be AAJ, AAX, AX, AJ
implemented, it MUST return the HTTP status code “501 Not
Implemented”. The error payload MUST indicate the unhandled value.
[RSG-13] A Web APl SHOULD only use top-level resources. If there are sub- AAJ, AAX
resources, they should be collections and imply an association. An entity
should be accessible as either top-level resource or sub-resource but
not using both ways.
[RSG-14] If a resource can be stand-alone it MUST be a top-level resource, or AAJ, AAX, AX, AJ
otherwise a sub-resource.
[RSG-15] Query parameters MUST be used instead of URL paths to retrieve AAJ, AAX, AX, AJ
nested resources.
[RSG-16] Resource names SHOULD be nouns for CRUD Web APIs and verbs for | AAJ, AAX
Intent Web APIs.
[RSG-17] If resource name is a noun it SHOULD always use the plural form. AAJ, AAX
Irregular noun forms SHOULD NOT be used. For example, /persons
should be used instead of /people.
[RSG-18] Resource names, segment and query parameters MUST be composed AAJ, AAX, AX, AJ
of words in the English language, using the primary English spellings
provided in the Oxford English Dictionary. Resource names that are
localized due to business requirements MAY be in other languages.
[RSG-19] A Web APl SHOULD use for content type negotiation the request HTTP | AAJ, AAX
header Accept and the response HTTP header Content-Type.
[RSG-20] A Web API MUST support content type negotiation following IETF RFC AAJ, AAX, AX, AJ
7231.
[RSG-21] JSON format MUST be assumed when no specific content type is AAJ, AAX, AX, AJ
requested.
[RSG-22] A Web API SHOULD return the status code “406 Not Acceptable”if | AAJ, AAX
a requested format is not supported.
[RSG-23] A Web API SHOULD reject requests containing unexpected or missing AAJ, AAX
content type headers with the HTTP status code “406 Not
Acceptable” or “415 Unsupported Media Type’.
[RSJ-25] JSON object property names SHOULD be provided in lowerCamelCase, | AAJ
e.g., applicantName.
[RSG-27] A Web API MUST support at least XML or JSON. AAJ, AAX, AX, AJ
[RSG-28] HTTP Methods MUST be restricted to the HTTP standard methods AAJ, AAX, AX, AJ
POST, GET, PUT, DELETE, OPTIONS, PATCH, TRACE and HEAD, as
specified in IETF RFC 7231 and 5789.
[RSG-29] HTTP Methods MAY follow the pick-and-choose principle, which states AAJ, AAX
that only the functionality needed by the target usage scenario should
be implemented.
[RSG-30] Some proxies support only POST and GET methods. To overcome these | AAJ, AAX

CWsS/8/2

MpunoxeHue, cTp. 46

[RSG-31]

If a HTTP Method is not supported, the HTTP status code “405
Method Not Allowed” SHOULD be returned.

AAJ, AAX

[RSG-32]

A Web API SHOULD support batching operations (aka bulk operations)
in place of multiple individual requests to achieve latency reduction. The
same semantics should be used for HTTP Methods and HTTP status
codes. The response payload SHOULD contain information about all
batching operations. If multiple errors occur, the error payload SHOULD
contain information about all the occurrences (in the details attribute). All
bulk operations SHOULD be executed in an atomic operation.

AAJ, AAX

[RSG-33]

For an end point which fetches a single resource, if a resource is not
found, the method GET MUST return the status code “404 Not
Found”. Endpoints which return lists of resources will simply return an
empty list.

AAJ, AAX, AX, AJ

[RSG-34]

If a resource is retrieved successfully, the GET method MUST return
200 OK.

AAJ, AAX, AX, AJ

[RSG-35]

A GET request MUST be idempotent.

AAJ, AAX, AX, AJ

[RSG-36]

When the URI length exceeds the 255 bytes, the POST method
SHOULD be used instead of GET due to GET limitations, or else create
named queries if possible.

AAJ, AAX

[RSG-37]

A HEAD request MUST be idempotent.

AAJ, AAX, AX, AJ

[RSG-38]

Some proxies support only POST and GET methods. A Web
AP| SHOULD support a custom HTTP request header to override the
HTTP Method in order to overcome these limitations.

AAJ, AAX

[RSG-39]

A POST request MUST NOT be idempotent according to the IETF
RFC 2616.

AAJ, AAX, AX, AJ

[RSG-40]

If the resource creation was successful, the HTTP header Location
SHOULD contain a URI (absolute or relative) pointing to a created
resource.

AAJ, AAX

[RSG-41]

If the resource creation was successful, the response SHOULD contain
the status code “201 Created”.

AAJ, AAX

[RSG-42]

If the resource creation was successful, the response payload SHOULD
by default contain the body of the created resource, to allow the client to
use it without making an additional HTTP call.

AAJ, AAX

[RSG-43]

A PUT request MUST be idempotent.

AAJ, AAX, AX, AJ

[RSG-44]

If a resource is not found, PUT MUST return the status code “404 Not
Found”.

AAJ, AAX, AX, AJ

[RSG-45]

If a resource is updated successfully, PUT MUST return the status code
“200 OK” if the updated resource is returned or a “204 No Content” if
it is not returned.

AAJ, AAX, AX, AJ

[RSG-46]

A PATCH request MUST NOT be idempotent.

AAJ, AAX, AX, AJ

[RSG-47]

If a Web APl implements partial updates, idempotent characteristics of
PATCH SHOULD be taken into account. In order to make it idempotent
the API MAY follow the IETF RFC 5789 suggestion of using optimistic
locking.

AAJ, AAX

[RSG-48]

If a resource is not found PATCH MUST return the status code “404
Not Found”.

AAJ, AAX, AX, AJ

[RSJ-49]

If a Web APl implements partial updates using PATCH, it MUST use the
JSON Merge Patch format to describe the partial change set, as
described in IETF RFC 7386 (by using the content type
application/merge-patch+json).

AAJ, AJ

[RSG-50]

A DELETE request MUST NOT be idempotent.

AAJ, AAX, AX, AJ

[RSG-51]

If a resource is not found, DELETE MUST return the status code “404
Not Found”.

AAJ, AAX, AX, AJ

[RSG-52]

If a resource is deleted successfully, DELETE MUST return the status
“200 OK” if the deleted resource is returned or “204 No Content” ifit
is not returned.

AAJ, AAX, AX, AJ

[RSG-53]

The final recipient is either the origin server or the first proxy or gateway
to receive a Max-Forwards value of zero in the request. A TRACE
request MUST NOT include a body.

AAJ, AAX, AX, AJ

[RSG-54]

A TRACE request MUST NOT be idempotent.

AAJ, AAX, AX, AJ

[RSG-55]

The value of the via HTTP header field MUST act to track the request
chain.

AAJ, AAX, AX, AJ

[RSG-56]

The Max-Forwards HTTP header field MUST be used to allow the client
to limit the length of the request chain.

AAJ, AAX, AX, AJ

[RSG-57]

If the request is valid, the response SHOULD contain the entire request
message in the response body, with a Content-Type of "message/http".

AAJ, AAX

[RSG-58]

Responses to TRACE MUST NOT be cached.

AAJ, AAX, AX, AJ

CwWsS/8/2
Mpunoxenue, cTp. 47

[RSG-59]

The status code “200 0K” SHOULD be returned to TRACE.

AAJ, AAX

[RSG-60]

An OPTIONS request MUST be idempotent.

AAJ, AAX, AX, AJ

[RSG-61]

Custom HTTP headers starting with the “X-" prefix SHOULD NOT be
used.

AAJ, AAX

[RSG-62]

Custom HTTP headers SHOULD NOT be used to change the behavior
of HTTP Methods unless it is to resolve any existing technical limitations
(for example, see [RSG-39]).

AAJ, AAX

[RSG-63]

The naming convention for custom HTTP headers is
<organization>-<header name>, where <organization> and
<header> SHOULD follow the kebab-case convention.

AAJ, AAX

[RSG-64]

A Web API SHOULD support a single method of service versioning
using URI versioning, for example /api/v1/inventors or Header
versioning, for example Accept-version: v1 or Media type
versioning, for example Accept: application/vnd.vl+json.
Query string versioning SHOULD NOT be used.

AAJ, AAX

[RSG-65]

A versioning-numbering scheme SHOULD be followed considering only
the major version number (for example /v1).

AAJ, AAX

[RSG-66]

API service contracts MAY include endpoint redirection feature. When a
service consumer attempts to invoke a service, a redirection response
may be returned to tell the service consumer to resend the request to a
new endpoint. Redirections MAY be temporary or permanent:

— Temporary redirect - using the HTTP response header
Location and the HTTP status code “302 Found” according
to IETF RFC 7231; or

— Permanent redirect - using the HTTP response header

Location and the HTTP status code “301 Moved Permanently”
according to IETF RFC 7238.

AAJ, AAX

[RSG-67]

API lifecycle strategies SHOULD be published by the developers to
assist users in understanding how long a version will be maintained.

AAJ, AAX

[RSG-68]

A Web API SHOULD support pagination.

AAJ, AAX

[RSG-69]

Paginated requests MAY NOT be idempotent.

AAJ, AAX

[RSG-70]

A Web APl MUST use query parameters to implement pagination.

AAJ, AAX, AX, AJ

[RSG-71]

A Web API MUST NOT use HTTP headers to implement pagination.

AAJ, AAX, AX, AJ

[RSG-72]

Query parameters 1imit=<number of items to deliver> and
offset=<number of items to skip> SHOULD be used, where
limit is the number of items to be returned (page size), and skip the
number of items to be skipped (offset). If no page size limit is specified,
a default SHOULD be defined - global or per collection; the default offset
MUST be zero “0”. For example, the following is a valid URL:

https://wipo.int/api/v1l/patents?limit=10&offset=20

AAJ, AAX

[RSG-73]

The limit and the offset parameter values SHOULD be included in the
response.

AAJ, AAX

[RSG-74]

A Web API SHOULD support sorting.

AAJ, AAX

[RSG-75]

In order to specify a multi-attribute sorting criterion, a query parameter
MUST be used. The value of this parameter is a comma-separated list
of sort keys and sort directions either ‘asc’ for ascending or ‘desc’ for
descending MAY be appended to each sort key, separated by the colon
“’ character. The default direction MUST be specified by the server in
case that a sort direction is not specified for a key.

AAJ, AAX, AX, AJ

[RSG-76]

A Web API SHOULD return the sorting criteria in the response.

AAJ, AAX, AX, AJ

[RSG-77]

A Web API MAY support expanding the body of returned content. The
query parameter expand=<comma-separated list of
attributes names> SHOULD be used.

AAJ, AAX

[RSG-78]

A query parameter SHOULD be used instead of URL paths in case that
a Web API supports projection following the format:
“fields="<comma-separated list of attribute names>.

AAJ, AAX

[RSG-79]

A Web API MUST support returning the number of items in a collection.

AAJ, AAX, AX, AJ

[RSG-80]

A query parameter MUST be used to support returning the number of
items in a collection.

AAJ, AAX, AX, AJ

[RSG-81]

The query parameter count SHOULD be used to return the number of
items in a collection.

AAJ, AAX

https://wipo.int/api/v1/patents?limit=10&offset=20

CwWsS/8/2
MpunoxeHwue, cTp. 48

[RSG-82]

A Web API MAY support returning the number of items in a collection
inline, i.e. as the part of the response that contains the collection itself. A
query parameter MUST be used.

AAJ, AAX, AX, AJ

[RSG-83]

The query parameter count=true SHOULD be used. If not specified,
count should be set by default to false.

AAJ, AAX

[RSG-84]

If a Web API supports pagination, it SHOULD support returning inline in
the response the number of the collection (i.e. the total number of items
of the collection).

AAJ, AAX

[RSG-85]

When a Web API supports complex search expressions, a query
language SHOULD be specified, such as CQL.

AAJ, AAX

[RSG-86]

A Service Contract MUST specify the grammar supported (such as
fields, functions, keywords, and operators).

AAJ, AAX, AX, AJ

[RSG-87]

The query parameter “q” MUST be used.

AAJ, AAX, AX, AJ

[RSG-88]

On the protocol level, a Web API MUST return an appropriate HTTP
status code selected from the list of standard HTTP Status Codes.

AAJ, AAX, AX, AJ

[RSJ-89]

On the application level, a Web APl MUST return a payload reporting the error
in adequate granularity. The code and message attributes are mandatory,
the details attribute is conditionally mandatory and target, status,
moreInfo, and internalMessage attributes are optional.

AAJ, AAX, AX, AJ

[RSG-90]

Errors MUST NOT expose security-critical data or internal technical
details, such as call stacks in the error messages.

AAJ, AAX, AX, AJ

[RSG-91]

The HTTP Header: Reason-Phrase (described in RFC 2616) MUST
NOT be used to carry error messages.

AAJ, AAX, AX, AJ

[RSG-92]

Every logged error SHOULD have a unique Correlation ID. A custom
HTTP header SHOULD be used and SHOULD be named Correlation-
ID.

AAJ, AAX

[RSG-93]

A Service Contract format MUST include the following:

— APl version;

— Information about the semantics of API elements;

— Resources;

— Resource attributes;

— Query Parameters;

— Methods;

— Media types;

— Search grammar (if one is supported);

— HTTP Status Codes;

— HTTP Methods;

— Restrictions and distinctive features; and
Security (if any).

AAJ, AAX, AX, AJ

[RSG-94]

Service Contract format SHOULD include requests and responses in
XML schema or JSON Schema and examples of the API usage in the
supported formats, i.e., XML or JSON.

AAJ, AAX

[RSG-95]

A REST API MUST provide API documentation as a Service Contract.

AAJ, AAX, AX, AJ

[RSG-96]

A Web API implementation deviating from this Standard MUST

be explicitly documented in the Service Contract. If a deviating rule is
not specified in the Service Contract, it MUST be assumed that this
Standard is followed.

AAJ, AAX, AX, AJ

[RSG-97]

A Service Contract MUST allow API client skeleton code generation.

AAJ, AAX, AX, AJ

[RSG-98]

A Service Contract SHOULD allow server skeleton code generation.

AAJ, AAX

[RSG-99]

A Web API documentation SHOULD be written in RAML or OAS.
Custom documentation formats SHOULD NOT be used.

AAJ, AAX

[RSG-100]

A Web API consumer SHOULD be able to specify a server timeout for
each request; a custom HTTP header SHOULD be used. A maximum
server timeout SHOULD be also used to protect server resources from
over-use.

AAJ, AAX

[RSG-101]

A Web API SHOULD support conditionally retrieving data, to ensure
only data which is modified will be retrieved. Content-based Resource
Validation SHOULD be used because it is more accurate.

AAJ, AAX

[RSG-102]

In order to implement Content-based Resource Validation the ETag
HTTP header SHOULD be used in the response to encode the data
state. Afterward, this value SHOULD be used in subsequent requests in
the conditional HTTP headers (such as If-Match or If-None-Match). If the
data has not been modified since the request returned the ETag, the
server SHOULD return the status code “304 Not Modified” (if not
modified). This mechanism is specified in IETF RFC 7231 and 7232.

AAJ, AAX

CwWsS/8/2
MpunoxeHwue, cTp. 49

[RSG-103]

In order to implement Time-based Resource Validation the Last-
Modified HTTP header SHOULD be used. This mechanism is
specified in IETF RFC 7231 and 7232.

AAJ, AAX

[RSG-104]

Using response versioning, a service consumer MAY implement
Optimistic Locking.

AAJ, AAX

[RSG-105]

A Web API MUST support caching of GET results; a Web APl MAY
support caching of results from other HTTP Methods.

AAJ, AJ, AX

[RSG-106]

The HTTP response headers Cache-Control and Expires SHOULD
be used. The latter MAY be used to support legacy clients.

AAJ, AAX

[RSG-107]

A Web APl SHOULD advertise if it supports partial file downloads by
responding to HEAD requests and replying with the HTTP response
headers Accept-Ranges and Content-Length.

AAJ, AAX

[RSG-108]

A Web API SHOULD support partial file downloads. Multi-part ranges
SHOULD be supported.

AAJ, AAX

[RSG-109]

A Web APl SHOULD advertise if it supports partial file uploads.

AAJ, AAX

[RSG-110]

A Web APl SHOULD support partial file uploaded. Multi-part ranges
SHOULD be supported.

AAJ, AAX

[RSG-111]

The service provider SHOULD return with HTTP response headers the
HTTP header “413 Request Entity Too Large”in case the
request has exceeded the maximum allowed limit. A custom HTTP
header MAY be used to indicate the maximum size of the request.

AAJ, AAX

[RSG-112]

If a Web API supports preference handling, it SHOULD be implemented
according to IETF RFC 7240, i.e. the request HTTP header Prefer
SHOULD be used and the response HTTP header Preference-
Applied SHOULD be returned (echoing the original request).

AAJ, AAX

[RSG-113]

If a Web API supports preference handling, the nomenclature of
preferences that MAY be set by using the Prefer header MUST be
recorded in the Service Contract.

AAJ, AAX, AJ, AX

[RSG-114]

If a Web API supports localized data, the request HTTP header
Accept-Language MUST be supported to indicate the set of natural
languages that are preferred in the response as specified in IETF RFC
7231.

AAJ, AAX, AJ, AX

[RSG-115]

If the API supports long-running operations, they SHOULD be
asynchronous. The following approach SHOULD be followed:

a. The service consumer activates the service operation;

b. The service operation returns the status code “202 Accepted”
according to IETF RFC 7231 (section 6.3.3), i.e. the request has
been accepted for processing but the processing has not been
completed. The location of the queued task that was created is also
returned with the HTTP header Location; and

c. The service consumer calls the returned Location to learn if the
resource is available. If the resource is not available, the response
SHOULD have the status code “200 OK”, contain the task status (for
example pending) and MAY contain other information (for example,
a link to cancel or delete the task using the DELETE HTTP method).
If the resource is available, the response SHOULD have the status
code “303 See Other” and the HTTP header Location SHOULD
contain the URL to retrieve the task results.

AAJ, AAX

[RSG-116]

Confidentiality: APIs and API Information MUST be identified, classified,
and protected against unauthorized access, disclosure and
eavesdropping at all times. The least privilege, zero trust, need to know
and need to share principles MUST be followed.

AAJ, AAX, AJ, AX

[RSG-117]

Integrity-Assurance: APIs and API Information MUST be protected
against unauthorized modification, duplication, corruption and
destruction. Information MUST be modified through approved
transactions and interfaces. Systems MUST be updated using approved
configuration management, change management and patch
management processes.

AAJ, AAX, AJ, AX

[RSG-118]

Availability: APIs and API Information MUST be available to authorized
users at the right time as defined in the Service Level Agreements
(SLAs), access-control policies and defined business processes.

AAJ, AAX, AJ, AX

[RSG-119]

Non-repudiation: Every transaction processed or action performed by
APIs MUST enforce non-repudiation through the implementation of
proper auditing, authorization, authentication, and the implementation of
secure paths and non-repudiation services and mechanisms.

AAJ, AAX, AJ, AX

CwWsS/8/2
MpunoxeHwue, ctp. 50

[RSG-120]

Authentication, Authorization, Auditing: Users, systems, APIs or devices
involved in critical transactions or actions MUST be authenticated,
authorized using role-based or attribute based access-control services
and maintain segregation of duty. In addition, all actions MUST be
logged and the authentication’s strength must increase with the
associated information risk.

AAJ, AAX, AJ, AX

[RSG-121]

While developing APIs, threats, malicious use cases, secure coding
techniques, transport layer security and security testing MUST be
carefully considered, especially:

— PUTs and POSTs —i.e.: which change to internal data
could potentially be used to attack or misinform;

— DELETES —i.e.: could be used to remove the contents of
an internal resource repository;

— Whitelist allowable methods- to ensure that allowable
HTTP Methods are properly restricted while others would
return a proper response code; and

— Well known attacks should be considered during the
threat-modeling phase of the design process to ensure
that the threat risk does not increase. The threats and
mitigation defined within OWASP Top Ten Cheat
Sheet MUST be taken into consideration.

AAJ, AAX, AJ, AX

[RSG-122]

While developing APls, the standards and best practices listed below
SHOULD be followed:

— Secure coding best practices: OWASP Secure Coding
Principles;

— Rest API security: REST Security Cheat Sheet;

— Escape inputs and cross site scripting protection: OWASP
XSS Cheat Sheet;

— SQL Injection prevention: OWASP SQL Injection Cheat
Sheet, OWASP Parameterization Cheat Sheet; and

— Transport layer security: OWASP Transport Layer
Protection Cheat Sheet.

AAJ, AAX, AJ, AX

[RSG-123]

Security testing and vulnerability assessment MUST be carried out to
ensure that APIs are secure and threat-resistant. This requirement MAY
be achieved by leveraging Static and Dynamic Application Security
Testing (SAST/DAST), automated vulnerability management tools and
penetration testing.

AAJ, AAX, AJ, AX

[RSG-124]

Protected services MUST only provide HTTPS endpoints using TLS 1.2,
or higher, with a cipher suite that includes ECDHE for key exchange.

AAJ, AAX, AJ, AX

[RSG-125]

When considering authentication protocols, perfect forward secrecy
SHOULD be used to provide transport security. The use of insecure
cryptographic algorithms and backwards compatibility to SSL 3 and TLS
1.0/1.1 SHOULD NOT be allowed.

AAX, AAJ

[RSG-126]

For maximum security and trust, a site-to-site IPSEC VPN SHOULD be
established to further protect the information transmitted over insecure
networks.

AAX, AAJ

[RSG-127]

The consuming application SHOULD validate the TLS certificate chain
when making requests to protected resources, including checking the
certificate revocation list.

AAX, AAJ

[RSG-128]

Protected services SHOULD only use valid certificates issued by a
trusted certificate authority (CA).

AAX, AAJ

[RSG-129]

Tokens SHOULD be signed using secure signing algorithms that are
compliant with the digital signature standard (DSS) FIPS —186-4. The
RSA digital signature algorithm or the ECDSA algorithm SHOULD be
considered.

AAX, AAJ

[RSG-130]

Anonymous authentication MUST only be used when the customers and
the application they are using accesses information or feature with a low
sensitivity level which should not require authentication, such as, public
information.

AAJ, AAX, AJ, AX

[RSG-131]

Username and password or password hash authentication MUST NOT
be allowed.

AAJ, AAX, AJ, AX

[RSG-132]

If a service is protected, Open ID Connect SHOULD be used.

AAX, AAJ

[RSG-133]

Where a JISON Web Token (JWT) is used, a JWT secret SHOULD
possess high entropy to increase the work factor of a brute force attack;

AAX, AAJ

https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/Secure_Coding_Principles
https://www.owasp.org/index.php/Secure_Coding_Principles
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

CwWsS/8/2
MpunoxeHwue, cTp. 51

token TTL and RTTL SHOULD be as short as possible; and sensitive
information SHOULD NOT be stored in the JWT payload.

[RSG-134]

In POST/PUT requests, sensitive data SHOULD be transferred in the
request body or by request headers.

AAX, AAJ

[RSG-135]

In GET requests, sensitive data SHOULD be transferred in an HTTP
Header.

AAX, AAJ

[RSG-136]

In order to minimize latency and reduce coupling between
protected services, the access control decision SHOULD be taken
locally by REST endpoints.

AAX, AAJ

[RSG-137]

API Keys SHOULD be used for protected and public services to prevent
overwhelming their service provider with multiple requests (denial-of-
service attacks). For protected services APl Keys MAY be used for
monetization (purchased plans), usage policy enforcement (QoS) and
monitoring.

AAX, AAJ

[RSG-138]

API Keys MAY be combined with the HTTP request header user-agent
to discern between a human user and a software agent as specified in
IETF RFC 7231.

AAX, AAJ

[RSG-139]

The service provider SHOULD return along with HTTP response
headers the current usage status. The following response data MAY be
returned:

— rate limit - rate limit (per minute) as set in the system;

— rate limit remaining - remaining amount of requests
allowed during the current time slot (-1 indicates that the
limit has been exceeded); and

— rate limit reset - time (in seconds) remaining until the
request counter will be reset.

AAX, AAJ

[RSG-140]

The service provider SHOULD return the status code “429 Too Many
Requests” if requests are coming in too quickly.

AAX, AAJ

[RSG-141]

API Keys MUST be revoked if the client violates the usage agreement,
as specified by the IP Office..

AAJ, AAX, AJ, AX

[RSG-142]

API Keys SHOULD be transferred using custom HTTP headers. They
SHOULD NOT be transferred using query parameters.

AAX, AAJ

[RSG-143]

API Keys SHOULD be randomly generated.

AAX, AAJ

[RSG-144]

Secure and trusted certificates MUST be issued by a mutually trusted
certificate authority (CA) through a trust establishment process or cross-
certification.

AAJ, AAX, AJ, AX

[RSG-145]

Certificates shared between the client and the server SHOULD be used
to mitigate identity security risks particular to sensitive systems and
privileged actions, for example X.509.

AAJ, AAX, AJ, AX

[RSG-146]

For highly privileged services, two-way mutual authentication between
the client and the server SHOULD use certificates to provide additional
protection.

AAX, AAJ

[RSG-147]

Multi-factor authentication SHOULD be implemented to mitigate identity
risks for application with a high-risk profile, a system processing very
sensitive information or a privileged action.

AAX, AAJ

[RSG-148]

If the REST APl is public, the HTTP header Access-Control-Allow-Origin
MUST be set to ™.

AAJ, AAX, AJ, AX

[RSG-149]

If the REST API is protected, CORS SHOULD be used, if possible. Else,
JSONP MAY be used as fallback but only for GET requests, for
example, when the user is accessing using an old browser. Iframe
SHOULD NOT be used.

AAX, AAJ

[RSJ-150]

If using instances described a schema, the Link header SHOULD be
used to provide a link to a downloadable JSON schema ACCORDING
TO RFC8288.

AAJ

[RSJ-151]

A Web API SHOULD implement at least Level 2 (Transport Native
Properties) of RMM. Level 3 (Hypermedia) MAY be implemented to
make the API completely discoverable.

AAJ

[RSJ-152]

For designing a custom hypermedia format the following set of attributes
SHOULD be used enclosed into an attribute link:

— href —the target URI;

— rel —the meaning of the target URI;

— self —the URI references the resource itself;

— next —the URI references the previous page (if used
during pagination);

AAJ

CwWsS/8/2
MpunoxeHwue, cTp. 52

previous — the URI references the next page (if used
during pagination); and

arbitrary name v denotes the custom meaning of a
relation.

Table 4: Conformance Level AAX

CwWsS/8/2
MpunoxeHwue, cTp. 53

Rule ID Rule Cross reference
and remark
[RSG-01] The forward slash character “/” MUST be used in the path of the URI to indicate a AAJ, AAX
hierarchical relationship between resources but the path MUST NOT end with a
forward slash as it does not provide any semantic value and may cause confusion.
[RSG-02] Resources name MUST be consistent in their naming pattern. AAJ, AAX, AJ, AX
[RSG-03] Resource names SHOULD use lowercase or kebab-case naming conventions. AAJ, AAX
Resources name MAY be abbreviated.
[RSG-05] Query parameters SHOULD use the lowerCamelCase convention. Query AAJ, AAX
parameter MAY be abbreviated.
[RSG-06] The URL pattern for a Web API MUST contain the word “api” in the URI. AAJ, AAX, AX, AJ
[RSG-07] Matrix parameters MUST NOT be used. AAJ, AAX, AX, AJ
[RSG-08] A Web API MUST consistently apply HTTP status codes as described in IETF AAJ, AAX, AX, AJ
RFCs
[RSG-09] The recommended codes in Annex V SHOULD be used by a Web API to classify AAX, AAJ
the error.
[RSG-10] If the API detects invalid input values, it MUST return the HTTP status code “400 AAJ, AAX, AX, AJ
Bad Request”. The error payload MUST indicate the erroneous value.
[RSG-11] If the API detects syntactically correct argument names (in the request or query AAJ, AAX
parameters) that are not expected, it SHOULD ignore them.
[RSG-12] If the API detects valid values that require features to not be implemented, it AAJ, AAX, AX, AJ
MUST return the HTTP status code “501 Not Implemented’. The error payload
MUST indicate the unhandled value.
[RSG-13] A Web APl SHOULD only use top-level resources. If there are sub-resources, they | AAJ, AAX
should be collections and imply an association. An entity should be accessible as
either top-level resource or sub-resource but not using both ways.
[RSG-14] If a resource can be stand-alone it MUST be a top-level resource, or otherwise a AAJ, AAX, AX, AJ
sub-resource.
[RSG-15] Query parameters MUST be used instead of URL paths to retrieve nested AAJ, AAX, AX, AJ
resources.
[RSG-16] Resource names SHOULD be nouns for CRUD Web APIs and verbs for Intent AAJ, AAX
Web APIs.
[RSG-17] If resource name is a noun it SHOULD always use the plural form. Irregular noun AAJ, AAX
forms SHOULD NOT be used. For example, /persons should be used instead of
/people.
[RSG-18] Resource names, segment and query parameters MUST be composed of words in | AAJ, AAX, AX, AJ
the English language, using the primary English spellings provided in the Oxford
English Dictionary. Resource names that are localized due to business
requirements MAY be in other languages.
[RSG-19] A Web API SHOULD use for content type negotiation the request HTTP header AAJ, AAX
Accept and the response HTTP header Content-Type.
[RSG-20] A Web APl MUST support content type negotiation following IETF RFC 7231. AAJ, AAX, AX, AJ
[RSG-21] JSON format MUST be assumed when no specific content type is requested. AAJ, AAX, AX, AJ
[RSG-22] A Web API SHOULD return the status code “406 Not Acceptable”ifa AAJ, AAX
requested format is not supported.
[RSG-23] A Web API SHOULD reject requests containing unexpected or missing content AAJ, AAX
type headers with the HTTP status code “406 Not Acceptable”or“415
Unsupported Media Type’.
[RSX-24] The requests and responses (naming convention, message format, data structure, | AAX
and data dictionary) SHOULD refer to WIPO Standard ST.96.
[RSX-26] XML components SHOULD be provided in UpperCamelCase in line with WIPO AAX
Standard ST.96.
[RSG-27] A Web API MUST support at least XML or JSON. AAJ, AAX, AX, AJ
[RSG-28] HTTP Methods MUST be restricted to the HTTP standard methods POST, GET, AAJ, AAX, AX, AJ
PUT, DELETE, OPTIONS, PATCH, TRACE and HEAD, as specified in IETF RFC 7231
and 5789.
[RSG-29] HTTP Methods MAY follow the pick-and-choose principle, which states that only AAJ, AAX
the functionality needed by the target usage scenario should be implemented.
[RSG-30] Some proxies support only POST and GET methods. To overcome these AAJ, AAX
limitations, a Web APl MAY use a POST method with a custom HTTP header
“tunneling” the real HTTP method. The custom HTTP header Xx-HTTP-Method
SHOULD be used.

CwWsS/8/2
MpunoxeHue, ctp. 54

[RSG-31] If a HTTP Method is not supported, the HTTP status code “405 Method Not AAJ, AAX
Allowed” SHOULD be returned.
[RSG-32] A Web API SHOULD support batching operations (aka bulk operations) in place of | AAJ, AAX
multiple individual requests to achieve latency reduction. The same semantics
should be used for HTTP Methods and HTTP status codes. The response payload
SHOULD contain information about all batching operations. If multiple errors
occur, the error payload SHOULD contain information about all the occurrences (in
the details attribute). All bulk operations SHOULD be executed in an atomic
operation.
[RSG-33] For an end point which fetches a single resource, if a resource is not found, the AAJ, AAX, AX, AJ
method GET MUST return the status code “404 Not Found”. Endpoints which
return lists of resources will simply return an empty list.
[RSG-34] If a resource is retrieved successfully, the GET method MUST return 200 OK. AAJ, AAX, AX, AJ
[RSG-35] A GET request MUST be idempotent. AAJ, AAX, AX, AJ
[RSG-36] When the URI length exceeds the 255 bytes, the POST method SHOULD be used AAJ, AAX
instead of GET due to GET limitations, or else create named queries if possible.
[RSG-37] A HEAD request MUST be idempotent. AAJ, AAX, AX, AJ
[RSG-38] Some proxies support only POST and GET methods. A Web API SHOULD support | AAJ, AAX
a custom HTTP request header to override the HTTP Method in order to overcome
these limitations.
[RSG-39] A POST request MUST NOT be idempotent according to the IETF RFC 2616. AAJ, AAX, AX, AJ
[RSG-40] If the resource creation was successful, the HTTP header Location SHOULD AAJ, AAX
contain a URI (absolute or relative) pointing to a created resource.
[RSG-41] If the resource creation was successful, the response SHOULD contain the status | AAJ, AAX
code “201 Created”.
[RSG-42] If the resource creation was successful, the response payload SHOULD by default | AAJ, AAX
contain the body of the created resource, to allow the client to use it without
making an additional HTTP call.
[RSG-43] A PUT request MUST be idempotent. AAJ, AAX, AX, AJ
[RSG-44] If a resource is not found, PUT MUST return the status code “404 Not Found”. AAJ, AAX, AX, Ad
[RSG-45] If a resource is updated successfully, PUT MUST return the status code “200 OK” AAJ, AAX, AX, AJ
if the updated resource is returned ora “204 No Content” if it is not returned.
[RSG-46] A PATCH request MUST NOT be idempotent. AAJ, AAX, AX, AJ
[RSG-47] If a Web APl implements partial updates, idempotent characteristics of PATCH AAJ, AAX
SHOULD be taken into account. In order to make it idempotent the APl MAY follow
the IETF RFC 5789 suggestion of using optimistic locking.
[RSG-48] If a resource is not found, PATCH MUST return the status code “404 Not AAJ, AAX, AX, AJ
Found”.
[RSG-50] A DELETE request MUST NOT be idempotent. AAJ, AAX, AX, AJ
[RSG-51] If a resource is not found, DELETE MUST return the status code “404 Not AAJ, AAX, AX, Ad
Found’.
[RSG-52] If a resource is deleted successfully, DELETE MUST return the status “200 0K if AAJ, AAX, AX, AJ
the deleted resource is returned or “204 No Content” if it is not returned.
[RSG-53] The final recipient is either the origin server or the first proxy or gateway to receive | AAJ, AAX, AX, AJ
a Max-Forwards value of zero in the request. A TRACE request MUST NOT include
a body.
[RSG-54] A TRACE request MUST NOT be idempotent. AAJ, AAX, AX, AJ
[RSG-55] The value of the via HTTP header field MUST act to track the request chain. AAJ, AAX, AX, AJ
[RSG-56] The Max-Forwards HTTP header field MUST be used to allow the client to limit the | AAJ, AAX, AX, AJ
length of the request chain.
[RSG-57] If the request is valid, the response SHOULD contain the entire request message AAJ, AAX
in the response body, with a Content-Type of "message/http".
[RSG-58] Responses to TRACE MUST NOT be cached. AAJ, AAX, AX, AJ
[RSG-59] The status code “200 0K” SHOULD be returned to TRACE. AAJ, AAX
[RSG-60] An OPTIONS request MUST be idempotent. AAJ, AAX, AX, AJ
[RSG-61] Custom HTTP headers starting with the “X-" prefix SHOULD NOT be used. AAJ, AAX
[RSG-62] Custom HTTP headers SHOULD NOT be used to change the behavior of HTTP AAJ, AAX
Methods unless it is to resolve any existing technical limitations (for example, see
[RSG-39)).
[RSG-63] The naming convention for custom HTTP headers is <organization>-<header | AAJ, AAX
name>, where <organization> and <header> SHOULD follow the kebab-case
convention.
[RSG-64] A Web APl SHOULD support a single method of service versioning using URI AAJ, AAX

versioning, for example /api/vl/inventors or Header versioning, for example
Accept-version: v1 or Media type versioning, for example Accept:
application/vnd.vl+json. Query string versioning SHOULD NOT be used.

CWsS/8/2

MpunoxeHwue, cTp. 55

[RSG-65] A versioning-numbering scheme SHOULD be followed considering only the major | AAJ, AAX
version number (for example /v1).
[RSG-66] API service contracts MAY include endpoint redirection feature. When a service AAJ, AAX
consumer attempts to invoke a service, a redirection response may be returned to
tell the service consumer to resend the request to a new endpoint. Redirections
MAY be temporary or permanent:
— Temporary redirect - using the HTTP response header Location and the
HTTP status code “302 Found” according to IETF RFC 7231; or
— Permanent redirect - using the HTTP response header Location and the
HTTP status code “301 Moved Permanently” according to IETF RFC
7238.
[RSG-67] API lifecycle strategies SHOULD be published by the developers to assist usersin | AAJ, AAX
understanding how long a version will be maintained
[RSG-68] A Web API SHOULD support pagination. AAJ, AAX
[RSG-69] Paginated requests MAY NOT be idempotent. AAJ, AAX
[RSG-70] A Web APl MUST use query parameters to implement pagination. AAJ, AAX, AX, AJ
[RSG-71] A Web API MUST NOT use HTTP headers to implement pagination. AAJ, AAX, AX, AJ
[RSG-72] Query parameters 1imit=<number of items to deliver>and AAJ, AAX
offset=<number of items to skip> SHOULD be used, where limitis the
number of items to be returned (page size), and skip the number of items to be
skipped (offset). If no page size limit is specified, a default SHOULD be defined -
global or per collection; the default offset MUST be zero “0”. For example, the
following is a valid URL:
https://wipo.int/api/vl/patents?limit=10&offset=20
[RSG-73] The limit and the offset parameter values SHOULD be included in the response. AAJ, AAX
[RSG-74] A Web APl SHOULD support sorting. AAJ, AAX
[RSG-75] In order to specify a multi-attribute sorting criterion, a query parameter MUST be AAJ, AAX, AX, AJ
used. The value of this parameter is a comma-separated list of sort keys and sort
directions either ‘asc’ for ascending or ‘desc’ for descending MAY be appended to
each sort key, separated by the colon ‘’ character. The default direction MUST be
specified by the server in case that a sort direction is not specified for a key.
[RSG-76] A Web API SHOULD return the sorting criteria in the response. AAJ, AAX, AX, AJ
[RSG-77] A Web API MAY support expanding the body of returned content. The query AAJ, AAX
parameter expand=<comma-separated list of attributes names>
SHOULD be used.
[RSG-78] A query parameter SHOULD be used instead of URL paths in case that a Web API | AAJ, AAX
supports projection following the format: “fields="<comma-separated list
of attribute names>.
[RSG-79] A Web API MUST support returning the number of items in a collection. AAJ, AAX, AX, AJ
[RSG-80] A query parameter MUST be used to support returning the number of items in a AAJ, AAX, AX, AJ
collection.
[RSG-81] The query parameter count SHOULD be used to return the number of items in a AAJ, AAX
collection.
[RSG-82] A Web API MAY support returning the number of items in a collection inline, i.e. as | AAJ, AAX, AX, AJ
the part of the response that contains the collection itself. A query parameter
MUST be used.
[RSG-83] The query parameter count=true SHOULD be used. If not specified, count AAJ, AAX
should be set by default to false.
[RSG-84] If a Web API supports pagination, it SHOULD support returning inline in the AAJ, AAX
response the number of the collection (i.e. the total number of items of the
collection).
[RSG-85] When a Web API supports complex search expressions, a query language AAJ, AAX
SHOULD be specified, such as CQL.
[RSG-86] A Service Contract MUST specify the grammar supported (such as fields, AAJ, AAX, AX, AJ
functions, keywords, and operators).
[RSG-87] The query parameter “q” MUST be used. AAJ, AAX, AX, AJ
[RSG-88] On the protocol level, a Web APl MUST return an appropriate HTTP status code AAJ, AAX, AX, AJ
selected from the list of standard HTTP Status Codes.
[RSJ-89] On the application level, a Web API MUST return a payload reporting the error in AAJ, AAX, AX, AJ

adequate granularity. The code and message attributes are mandatory, the
details attribute is conditionally mandatory and target, status, moreInfo,
and internalMessage attributes are optional.

https://wipo.int/api/v1/patents?limit=10&offset=20

CWsS/8/2

MpunoxeHwue, cTp. 56

[RSG-90]

Errors MUST NOT expose security-critical data or internal technical details, such
as call stacks in the error messages.

AAJ, AAX, AX, AJ

[RSG-91]

The HTTP Header: Reason-Phrase (described in RFC 2616) MUST NOT be
used to carry error messages.

AAJ, AAX, AX, AJ

[RSG-92]

Every logged error SHOULD have a unique Correlation ID. A custom HTTP
header SHOULD be used and SHOULD be named Correlation-ID.

AAJ, AAX

[RSG-93]

A Service Contract format MUST include the following:

— APl version;

— Information about the semantics of API elements;
— Resources;

— Resource attributes;

— Query Parameters;

— Methods;

— Media types;

— Search grammar (if one is supported);

— HTTP Status Codes;

— HTTP Methods;

— Restrictions and distinctive features; and
— Security (if any).

AAJ, AAX, AX, AJ

[RSG-94]

Service Contract format SHOULD include requests and responses in XML schema
or JSON Schema and examples of the API usage in the supported formats, i.e.,
XML or JSON.

AAJ, AAX

[RSG-95]

A REST API MUST provide API documentation as a Service Contract.

AAJ, AAX, AX, AJ

[RSG-96]

A Web APl implementation deviating from this Standard MUST be explicitly
documented in the Service Contract. If a deviating rule is not specified in the
Service Contract, it MUST be assumed that this Standard is followed.

AAJ, AAX, AX, AJ

[RSG-97]

A Service Contract MUST allow API client skeleton code generation.

AAJ, AAX, AX, AJ

[RSG-98]

A Service Contract SHOULD allow server skeleton code generation.

AAJ, AAX

[RSG-99]

A Web APl documentation SHOULD be written in RAML or OAS. Custom
documentation formats SHOULD NOT be used.

AAJ, AAX

[RSG-100]

A Web API consumer SHOULD be able to specify a server timeout for each
request; a custom HTTP header SHOULD be used. A maximum server timeout
SHOULD be also used to protect server resources from over-use.

AAJ, AAX

[RSG-101]

A Web API SHOULD support conditionally retrieving data, to ensure only data
which is modified will be retrieved. Content-based Resource Validation SHOULD
be used because it is more accurate.

AAJ, AAX

[RSG-102]

In order to implement Content-based Resource Validation the ETag HTTP header
SHOULD be used in the response to encode the data state. Afterward, this value
SHOULD be used in subsequent requests in the conditional HTTP headers (such
as If-Match or If-None-Match). If the data has not been modified since the request
returned the ETag, the server SHOULD return the status code “304 Not

Modi fied” (if not modified). This mechanism is specified in IETF RFC 7231 and
7232.

AAJ, AAX

[RSG-103]

In order to implement Time-based Resource Validation the Last-Modified
HTTP header SHOULD be used. This mechanism is specified in IETF RFC 7231
and 7232.

AAJ, AAX

[RSG-104]

Using response versioning, a service consumer MAY implement Optimistic
Locking.

AAJ, AAX

[RSG-106]

The HTTP response headers Cache-Control and Expires SHOULD be used.
The latter MAY be used to support legacy clients.

AAJ, AAX

[RSG-107]

A Web API SHOULD advertise if it supports partial file downloads by responding to
HEAD requests and replying with the HTTP response headers Accept-Ranges
and Content-Length.

AAJ, AAX

[RSG-108]

A Web APl SHOULD support partial file downloads. Multi-part ranges SHOULD be
supported.

AAJ, AAX

[RSG-109]

A Web API SHOULD advertise if it supports patrtial file uploads.

AAJ, AAX

[RSG-110]

A Web API SHOULD support partial file uploaded. Multi-part ranges SHOULD be
supported.

AAJ, AAX

[RSG-111]

The service provider SHOULD return with HTTP response headers the HTTP
header “413 Request Entity Too Large”in case the request has exceeded
the maximum allowed limit. A custom HTTP header MAY be used to indicate the
maximum size of the request.

AAJ, AAX

CWsS/8/2

Mpunoxexwue, cTp. 57

[RSG-112]

If a Web API supports preference handling, it SHOULD be implemented according
to IETF RFC 7240, i.e. the request HTTP header prefer SHOULD be used and
the response HTTP header Preference-Applied SHOULD be returned
(echoing the original request).

AAJ, AAX

[RSG-113]

If a Web API supports preference handling, the nomenclature of preferences that
MAY be set by using the Prefer header MUST be recorded in the Service
Contract.

AAJ, AAX, AJ, AX

[RSG-114]

If a Web API supports localized data, the request HTTP header Accept-
Language MUST be supported to indicate the set of natural languages that are
preferred in the response as specified in IETF RFC 7231.

AAJ, AAX, AJ, AX

[RSG-115]

If the API supports long-running operations, they SHOULD be asynchronous. The
following approach SHOULD be followed:

a. The service consumer activates the service operation;

b. The service operation returns the status code “202 Accepted” according to
IETF RFC 7231 (section 6.3.3), i.e. the request has been accepted for
processing but the processing has not been completed. The location of the
queued task that was created is also returned with the HTTP header
Location; and

c. The service consumer calls the returned Location to learn if the resource is
available. If the resource is not available, the response SHOULD have the
status code “200 OK”, contain the task status (for example pending) and MAY
contain other information (for example, a link to cancel or delete the task using
the DELETE HTTP method). If the resource is available, the response SHOULD
have the status code “303 See Other” and the HTTP header Location
SHOULD contain the URL to retrieve the task results.

AAJ, AAX

[RSG-116]

Confidentiality: APIs and API Information MUST be identified, classified, and
protected against unauthorized access, disclosure and eavesdropping at all times.
The least privilege, zero trust, need to know and need to share principles MUST
be followed.

AAJ, AAX, AJ, AX

[RSG-117]

Integrity-Assurance: APIs and API Information MUST be protected against
unauthorized modification, duplication, corruption and destruction. Information
MUST be modified through approved transactions and interfaces. Systems MUST
be updated using approved configuration management, change management and
patch management processes.

AAJ, AAX, AJ, AX

[RSG-118]

Availability: APls and API Information MUST be available to authorized users at
the right time as defined in the Service Level Agreements (SLAs), access-control
policies and defined business processes.

AAJ, AAX, AJ, AX

[RSG-119]

Non-repudiation: Every transaction processed or action performed by APIs MUST
enforce non-repudiation through the implementation of proper auditing,
authorization, authentication, and the implementation of secure paths and non-
repudiation services and mechanisms.

AAJ, AAX, AJ, AX

[RSG-120]

Authentication, Authorization, Auditing: Users, systems, APIs or devices involved
in critical transactions or actions MUST be authenticated, authorized using role-
based or attribute based access-control services and maintain segregation of duty.
In addition, all actions MUST be logged and the authentication’s strength must
increase with the associated information risk.

AAJ, AAX, AJ, AX

[RSG-121]

While developing APls, threats, malicious use cases, secure coding techniques,
transport layer security and security testing MUST be carefully considered,
especially:

— PUTs and POSTs —i.e.: which change to internal data could
potentially be used to attack or misinform;

— DELETES —i.e.: could be used to remove the contents of an internal
resource repository;

— Whitelist allowable methods- to ensure that allowable HTTP
Methods are properly restricted while others would return a proper
response code; and

— Well known attacks should be considered during the threat-
modeling phase of the design process to ensure that the threat risk
does not increase. The threats and mitigation defined within
OWASP Top Ten Cheat Sheet MUST be taken into consideration.

AAJ, AAX, AJ, AX

[RSG-122]

While developing APIs, the standards and best practices listed below SHOULD be
followed:

— Secure coding best practices: OWASP Secure Coding Principles;

AAJ, AAX, AJ, AX

https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.owasp.org/index.php/Secure_Coding_Principles

CWsS/8/2

MpunoxeHue, cTp. 58

— Rest API security: REST Security Cheat Sheet;

— Escape inputs and cross site scripting protection: OWASP XSS
Cheat Sheet;

— SQL Injection prevention: OWASP SQL Injection Cheat Sheet,
OWASP Parameterization Cheat Sheet; and

— Transport layer security: OWASP Transport Layer Protection Cheat
Sheet.

[RSG-123]

Security testing and vulnerability assessment MUST be carried out to ensure that
APIs are secure and threat-resistant. This requirement MAY be achieved by
leveraging Static and Dynamic Application Security Testing (SAST/DAST),
automated vulnerability management tools and penetration testing.

AAJ, AAX, AJ, AX

[RSG-124]

Protected services MUST only provide HTTPS endpoints using TLS 1.2, or higher,
with a cipher suite that includes ECDHE for key exchange.

AAJ, AAX, AJ, AX

[RSG-125]

When considering authentication protocols, perfect forward secrecy SHOULD be
used to provide transport security. The use of insecure cryptographic algorithms
and backwards compatibility to SSL 3 and TLS 1.0/1.1 SHOULD NOT be allowed.

AAX, AAJ

[RSG-126]

For maximum security and trust, a site-to-site IPSEC VPN SHOULD be
established to further protect the information transmitted over insecure networks.

AAX, AAJ

[RSG-127]

The consuming application SHOULD validate the TLS certificate chain when
making requests to protected resources, including checking the certificate
revocation list.

AAX, AAJ

[RSG-128]

Protected services SHOULD only use valid certificates issued by a trusted
certificate authority (CA).

AAX, AAJ

[RSG-129]

Tokens SHOULD be signed using secure signing algorithms that are compliant
with the digital signature standard (DSS) FIPS —186-4. The RSA digital signature
algorithm or the ECDSA algorithm SHOULD be considered.

AAX, AAJ

[RSG-130]

Anonymous authentication MUST only be used when the customers and the
application they are using accesses information or feature with a low sensitivity
level which should not require authentication, such as, public information.

AAJ, AAX, AJ, AX

[RSG-131]

Username and password or password hash authentication MUST NOT be allowed.

AAJ, AAX, AJ, AX

[RSG-132]

If a service is protected, Open ID Connect SHOULD be used.

AAX, AAJ

[RSG-133]

Where a JISON Web Token (JWT) is used, a JWT secret SHOULD possess high
entropy to increase the work factor of a brute force attack; token TTL and RTTL
SHOULD be as short as possible; and sensitive information SHOULD NOT be
stored in the JWT payload.

AAX, AAJ

[RSG-134]

In POST/PUT requests, sensitive data SHOULD be transferred in the request body
or by request headers.

AAX, AAJ

[RSG-135]

In GET requests, sensitive data SHOULD be transferred in an HTTP Header.

AAX, AAJ

[RSG-136]

In order to minimize latency and reduce coupling between protected services, the
access control decision SHOULD be taken locally by REST endpoints.

AAX, AAJ

[RSG-137]

API Keys SHOULD be used for protected and public services to prevent
overwhelming their service provider with multiple requests (denial-of-service
attacks). For protected services API Keys MAY be used for monetization
(purchased plans), usage policy enforcement (QoS) and monitoring.

AAX, AAJ

[RSG-138]

API Keys MAY be combined with the HTTP request header user-agent to discern
between a human user and a software agent as specified in IETF RFC 7231.

AAX, AAJ

[RSG-139]

The service provider SHOULD return along with HTTP response headers the
current usage status. The following response data MAY be returned:

— rate limit - rate limit (per minute) as set in the system;

— rate limit remaining - remaining amount of requests allowed during
the current time slot (-1 indicates that the limit has been exceeded);
and

— rate limit reset - time (in seconds) remaining until the request
counter will be reset.

AAX, AAJ

[RSG-140]

The service provider SHOULD return the status code “429 Too Many
Requests” if requests are coming in too quickly.

AAX, AAJ

[RSG-141]

API Keys MUST be revoked if the client violates the usage agreement, as
specified by the IP Office..

AAJ, AAX, AJ, AX

[RSG-142]

API Keys SHOULD be transferred using custom HTTP headers. They SHOULD
NOT be transferred using query parameters.

AAX, AAJ

[RSG-143]

API Keys SHOULD be randomly generated.

AAX, AAJ

[RSG-144]

Secure and trusted certificates MUST be issued by a mutually trusted certificate
authority (CA) through a trust establishment process or cross-certification.

AAJ, AAX, AJ, AX

https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

CWsS/8/2

MpunoxeHue, cTp. 59

[RSG-145] Certificates shared between the client and the server SHOULD be used to mitigate | AAJ, AAX, AJ, AX
identity security risks particular to sensitive systems and privileged actions, for
example X.509.

[RSG-146] For highly privileged services, two-way mutual authentication between the client AAX, AAJ
and the server SHOULD use certificates to provide additional protection.

[RSG-147] Multi-factor authentication SHOULD be implemented to mitigate identity risks for AAX, AAJ
application with a high-risk profile, a system processing very sensitive information
or a privileged action.

[RSG-148] If the REST APl is public, the HTTP header Access-Control-Allow-Origin MUST be | AAJ, AAX, AJ, AX
setto ™.

[RSG-149] If the REST APl is protected, CORS SHOULD be used, if possible. Else, JSONP AAX, AAJ

MAY be used as fallback but only for GET requests, for example, when the user is
accessing using an old browser. Iframe SHOULD NOT be used.

[Annex Il of ST.XX follows]

ANNEX Il

CwWsS/8/2
MpunoxeHue, cTp. 60

REST IP Vocabulary

Final Draft

Proposal by the API Task Force for consideration at the CWS/8

1. The following IP Vocabulary is provided in Table 5 as examples of /basic RESTful Service Request parameters. IP
Offices will likely encounter the need to develop more complex requests and varied response payloads according to their
business needs. The parameters in this table are examples of ST.96 elements in lowerCamelCase, used for a JSON
response. The complete ST.96 IP data dictionary and IP XML Schemas can be accessed from this location:
https://www.wipo.int/standards/en/st96/v4-0/.

[Editorial Note: The API Task Force will be providing in a future revision a link to a more comprehensive list of REST IP
ST.96 and JSON vocabulary which will be dynamically maintained on an ongoing basis as IP elements and vocabulary
continue to evolve.]

Table 5: Example APl Business Vocabulary in lowerCamelCase following ST.96 XSDs

Business Resource Description
. Parameter Name
Domain(s) Name(s)
ALL /trademarks st13ApplicationNumber The application number for the filed IP, using WIPO ST.13
/patents format which is a string of several values including the national
/designs application number, IP Type, and the country/organization.
ALL /trademarks applicationNumber The application number for the filed IP in the format of the
/patents national office.
/designs
MULTIPLE /trademarks internationalRegistrationNumber The International Registration Number of the IP right.
/designs For Trademarks this pertains to the Madrid System
For Industrial Designs, this pertains to the Hague system.
ALL /trademarks Single document entry relevant to the search criteria provided
/patents availableDocument to DocList API
/designs
ALL /trademarks Sorting Criterion used by the DocList API
/patents sortingCriteria
/designs
ALL /trademarks The IP Office, in WIPO ST.2 format.
/patents receivingOfficeCode
/designs
ALL /trademarks The date received at the IP Office
/patents receivingOfficeDate
/designs
Trademarks | /trademarks registrationDate The date registered at the IP Office
applicationDate The date of the application
markCurrentStatusCode Code of the current legal status of the application
markCurrentStatusDate Date of the current legal status of the application
Patents /patents filingDate The date that the application was filed

grantPublicationDate

The date that the grant was published

fileReferenceldentifier

Applicants reference number

https://www.wipo.int/standards/en/st96/v4-0/
https://www.wipo.int/export/sites/www/standards/en/pdf/03-13-01.pdf
https://www.wipo.int/export/sites/www/standards/en/pdf/03-02-01.pdf

CwWsS/8/2
MpunoxeHwue, cTp. 61

applicationBodyStatus

Status of the application body

Data associated with a legal status event in relation to a

statusEventData o .
specific patent application
kevEventCode A code indicating a broad, high level event that covers the
y most general and important situations in a category

Industrial /designs applicationDate The date that the application was filed
Designs

designApplicationCurrentStatus Category of current legal status of the design application

designApplicationCurrentStatusDate | Date of the current legal status of the design application

2. The following technical query parameters defined in Table 6 should apply to all the REST API services:

Table 6: API Technical Vocabulary

Query/Path Parameter | Constraint Format
y Value Description Design Rule
Parameter Data Type
type/subtype;
parameter=value .
format string Used for content-type negotiation [RSG-19]
according to RFC7231 (prefer a HTTP request header)
3.1.1.1. Media Type
v% where % is a positive Used for service versioning (prefer
% string integer indicating version as path segment [RSG-64]
of the URL)
., ; positive limit=10 . N
limit integer The page size used for pagination [RSG-73]
offset integer 32:;:}{5;5 0 offset=> The offset used for pagination [RSG-73]
Possible sort=keyl:asc, key2:desc
comma- values:
separated P . . [RSG-74] -
sort Iist_ of _ asc Multi-attribute sorting criterion [RSG-76]
strings - desc
comma- expand=keyl, key2
separated Used for expanding the body of the R
expand list of returned content [RSG-77]
strings
count boolean Default is count=true Return_s the numbe_r c_)f items in a [RSG-81]
false collection (may be inline)
apiKey=abcdef12345
. . Used to indicate a Web API Key (a [RSG-137] — [RSG-
apiKey string

HTTP header should be preferred)

138]

[Annex 11l of ST.XX follows]

CwWsS/8/2
MpunoxeHwue, cTp. 62

ANNEX 1l

RESTFUL WEB APl GUIDELINES AND MODEL SERVICE CONTRACT

Final Draft

Proposal by the API Task Force for consideration at the CWS/8

1. Annex Il provides two example models of Standard-compliant API specifications which intend to provide guidance to
Intellectual Property Offices (IPOs) which wish to develop web services according to this Standard. Details regarding two
example models are provided below and Appendixes A and B.

2. It should be noted that the example models were produced using a hybrid-approach of contract-first and code-first
approaches.

DoclList Example Model

3. The first of the example models was inspired by the IP5° Office Open Portal Dossier (OPD) set of web services,
provided with the same name. The DocList API provides a list of relevant patent documents associated with at least an
application or publication number.

Patent Legal Status Example Model

4, The second of the example models is the patent legal status API which provides either the history of legal status
events for a particular application number or else the details of a particular legal status event.

[Appendices A and B to Annex Il of ST.XX follows]

19 The IP5 Offices are comprised of Chinese National Intellectual Property Administration (CNIPA), European Patent Office (EPO),
Japan Patent Office (JPO), Korean Intellectual Property Office (KIPO) and the United States Patent and Trademark Office (USPTO).

CwWsS/8/2
MpunoxeHwue, cTp. 63

APPENDIX A

DOCLIST EXAMPLE MODEL

1. Appendix A provides a link to a zip file which includes the requirements document which outlines the request and
response formats, the YAML specification and the XSD components.

2. Appendix A is available at:
https://www.wipo.int/edocs/mdocs/cws/en/cws_8/cws 8 2-appendixa.zip

APPENDIX B

PATENT LEGAL STATUS EXAMPLE MODEL

1. Appendix B provides a link to zip file provided here include the API specification provided in RAML, example data
and WIPO Standard ST.96 enumeration lists.

2. Appendix B is available at:
https://www.wipo.int/edocs/mdocs/cws/en/cws _8/cws_8 2-appendixb.zip

[Annex IV of ST.XX follows]

https://www.wipo.int/edocs/mdocs/cws/en/cws_8/cws_8_2-appendixa.zip
https://www.wipo.int/edocs/mdocs/cws/en/cws_8/cws_8_2-appendixb.zip

CwWsS/8/2
MpunoxeHue, cTp. 64

ANNEX IV

HIGH LEVEL SECURITY ARCHITECTURE BEST PRACTICES
Final Draft

Proposal by the API Task Force for consideration at the CWS/8

1. The security architecture defines the services and mechanisms that should be implemented to enforce defined
policies and rules while also providing a framework to further standardize and automate security. The core services and
mechanisms of this API Security Framework (the development portal, APl manager and API gateway) provide a grouping of
functionality. These functions can be delivered by discrete applications, bespoke code development, via COTS products or
through leveraging existing technologies that can be configured to provide these functions / services. Some of the
functionality may overlap or be combined into one or more products depending on the vendor used.

Cross-certification or Trust relationship

Trusted PKI{ External CA @ﬁ ...
| Create of App that consume API > Trusted PKI/ Intemal CA

rols

teroontrals
=4 BNOE|]

ol perirreteroont

- [
Ccrnrumirrg Publish AP| Developer
:pp "I:at"m applicationthat portal
s consumeAPls Internal APls
X\ Dy
Identity Federation service ; z B W""’” rat
Cons— Publish H |
Appcatels 2 - UseAPls @
] APl Developer ™= m
[portal
Create APls H
APl manager - Internal
+ H Application
Public j_]_jpubnsh ! 5 LEAEimetey developers
Access APls i o o]
. APlGatewsy K- - APl Gatewsy ISR
0O | .. : % ._ o]
e Backend
Partners by
) Server
&
A 5 H Query and
e [0 o] : transformation =
. o= d_
1P Offices servers 7 & a : ; ?\—,@\ ——
e A Frontend ; e
ILDﬁ\F y Server H Wy LDAR
g m O Business owner
- & Security
| N— h o |
Identity Store H L)
Ty By Store %ﬁﬁ!g Identity Store
L y | APl monitoring, analytics and policy definition te = |
1 T T
External - DMZ Internal
IPSEC Site-ta-Site VB
EZETL51.2 Encryption EZETLS1.2 Encryption E2ETL51.2 Encryption
2. The recommended security architecture SHOULD have the following API security services and mechanisms:

A Web API portal to provide functions such as API discovery, API analytics, access to specifications and
description including SLAs, social network and FAQs;

A Web API manager to provide centralized API administration and governance for API catalogues,
management of registration and on-boarding of various API developer communities, API lifecycle
management, application of pre-defined security profiles, and security policies lifecycle management;

A Web API gateway to provide security automation capabilities including but not limited to centralized threat
protections, centralized API authentication, authorization, logging, security policy enforcement, message
encryption, monitoring, and analytics;

A Web API monitoring and analytics service to provide functions such as advanced API services monitoring,
analytics, profile usage for security baselines, changes of usage and demand;

A credential store to provide capabilities to securely store API keys, secrets, certificates, etc.;

A trusted Certificate Authority (CA) to issue secure certificates and enable trust establishment between the
various Offices;

A Security Information and Event Management system (SIEM) to enable security logs correlation and
advanced security analytics and monitoring;

CwWsS/8/2
MpunoxeHue, cTp. 65

— An Identity Provider to manage the identities stored in the LDAP directories and enable authentication; and

— A Web application scanning product that performs regular security scans and performs analysis based on a
trusted security baseline such as OWASP Top 10.

[Annex V of ST.XX follows]

CwWsS/8/2
MpunoxeHue, cTp. 66

ANNEX V

HTTP STATUS CODES
Final Draft

Proposal by the API Task Force for consideration at the CWS/8

1. It is important to align responses around the appropriate HTTP status code and to follow the standard HTTP codes.
In addition to an appropriate status code, there should be a useful and concise description of the error in the body of your
HTTP response. Responses should be specific and clear so consumers can come to a conclusion very quickly when using
the APL.

2. The set of HTTP status codes is defined on the basis of in REC7231. The status codes listed below should be used
by an API, where applicable.

3. The following response status code categories are defined:

— 1xx: Informational - Communicates transfer protocol-level information;

— 2xx: Success - Indicates that the client's request was accepted successfully;

— 3xx: Redirection - Indicates that the client must take some additional action in order to complete their request;
— 4xx: Client Error - This category of error status codes points the finger at clients; and

— 5xx: Server Error - The server takes responsibility for these error status codes.

4. The following table consolidates the HTTP Status Codes and provides references to the relative IETF RFCs.
Value Description Reference

100 Continue [RFC7231, Section 6.2.1]
101 Switching Protocols [RFC7231, Section 6.2.2]
102 Processing [RFC2518]
103 Early Hints [RFC8297]

104-199 Unassigned
200 OK [RFC7231, Section 6.3.1]
201 Created [RFC7231, Section 6.3.2]
202 Accepted [RFC7231, Section 6.3.3]
203 Non-Authoritative Information [RFC7231, Section 6.3.4]
204 No Content [RFC7231, Section 6.3.5]
205 Reset Content [RFC7231, Section 6.3.6]
206 Partial Content [RFC7233, Section 4.1]
207 Multi-Status [REC4918]
208 Already Reported [RFC5842]

209-225 Unassigned
226 IM Used [REC3229]

227-299 Unassigned
300 Multiple Choices [RFC7231, Section 6.4.1]
301 Moved Permanently [RFC7231, Section 6.4.2]
302 Found [RFC7231, Section 6.4.3]
303 See Other [RFC7231, Section 6.4.4]
304 Not Modified [RFC7232, Section 4.1]
305 Use Proxy [RFC7231, Section 6.4.5]

http://www.iana.org/go/rfc7231

CWsS/8/2

MpunoxeHwue, cTp. 67

306 (Unused) [RFC7231, Section 6.4.6]
307 Temporary Redirect [RFC7231, Section 6.4.7]
308 Permanent Redirect [RFC7538]

309-399 Unassigned
400 Bad Request [RFC7231, Section 6.5.1]
401 Unauthorized [RFC7235, Section 3.1]
402 Payment Required [RFC7231, Section 6.5.2]
403 Forbidden [RFC7231, Section 6.5.3]
404 Not Found [RFC7231, Section 6.5.4]
405 Method Not Allowed [RFC7231, Section 6.5.5]
406 Not Acceptable [RFC7231, Section 6.5.6]
407 Proxy Authentication Required [RFC7235, Section 3.2]
408 Request Timeout [RFC7231, Section 6.5.7]
409 Conflict [RFC7231, Section 6.5.8]
410 Gone [RFC7231, Section 6.5.9]
411 Length Required [RFC7231, Section 6.5.10]
412 Precondition Failed [RFC7232, Section 4.2][RFC8144, Section 3.2]
413 Payload Too Large [RFC7231, Section 6.5.11]
414 URI Too Long [RFC7231, Section 6.5.12]
415 Unsupported Media Type [RFC7231, Section 6.5.13][RFC7694, Section 3]
416 Range Not Satisfiable [RFC7233, Section 4.4]
417 Expectation Failed [RFC7231, Section 6.5.14]

418-420 Unassigned
421 Misdirected Request [RFC7540, Section 9.1.2]
422 Unprocessable Entity [RFC4918]
423 Locked [REC4918]
424 Failed Dependency [RFC4918]
425 Unassigned
426 Upgrade Required [RFC7231, Section 6.5.15]
427 Unassigned
428 Precondition Required [RFC6585]
429 Too Many Requests [RFC6585]
430 Unassigned
431 Request Header Fields Too Large [RFC6585]

432-450 Unassigned
451 Unavailable For Legal Reasons [RFC7725]

452-499 Unassigned
500 Internal Server Error [RFC7231, Section 6.6.1]
501 Not Implemented [RFC7231, Section 6.6.2]
502 Bad Gateway [RFC7231, Section 6.6.3]
503 Service Unavailable [RFC7231, Section 6.6.4]
504 Gateway Timeout [RFC7231, Section 6.6.5]
505 HTTP Version Not Supported [RFC7231, Section 6.6.6]
506 Variant Also Negotiates [RFC2295]
507 Insufficient Storage [RFC4918]

CwWsS/8/2
MpunoxeHue, cTp. 68

508 Loop Detected [RFC5842]

509 Unassigned

510 Not Extended [RFC2774]

511 Network Authentication Required [RFC6585]
512-599 Unassigned

[Annex VI of ST.XX follows]

ANNEX VI

REPRESENTATIONAL TERMS

Final Draft

CwWsS/8/2
MpunoxeHue, cTp. 69

Proposal by the API Task Force for consideration at the CWS/8

Term

Definition

Data Type

Amount

A monetary value.

Number

Category

A specifically defined division or subset in a system of classification in
which all items share the same concept of taxonomy.

String

Code

A combination of one or more numbers, letters, or special characters,
which is substituted for a specific meaning. Represents finite,
predetermined values or free format.

String

Date

The notion of a specific point in time, expressed by year, month, and day.

String

Directory

Always preceded by PATH

String

Document

A CLOB stands for "Character Large OBject," which is a specific data
type for almost all databases. Quite simply, a CLOB is a pointer to text
stored outside of the table in a dedicated block. Used for XML
documents. Comprised of textual information of International Trademark
Registration being exchanged. XML tags identify the data items
concerned with such information. TIS - Madrid development team may
define the attribute XML_DOC as CLOB, pointer to Tagged Data stored
outside of the table in a dedicated block.

String

Identifier

A combination of one or more integers, letters, special characters which
uniquely identifies a specific instance of a business object, but which
may not have a readily definable meaning.

String

Indicator

A signal of the presence, absence, or requirement of something.
Recommended values are VY, N, and, “?” if needed.

Boolean

Measure

A measure is a numeric value determined by measuring an object along
with the specified unit of measure. MeasureType is used to represent a
kind of physical dimension such as temperature, length, speed, width,
weight, volume, latitude of an object. More precisely, MeasureType
should be used to measure intrinsic or physical properties of an object
seen as a whole.

Number

Name

The designation of an object expressed in a word or phrase.

String

Number

A string of numeral or alphanumeric characters expressing label, value,
guantity or identification.

Number, String

Percent

A number which represents a part of a whole, which will be divided
by 100.

Number

CwWsS/8/2
MpunoxeHwue, ctp. 70

Term Definition Data Type
Quantity A gquantity is a counted number of non-monetary units, possibly including | Number
fractions. Quantity is used to represent a counted number of things.

Quantity should be used for simple properties of an object seen as a

composite or collection or container to quantify or count its components.

Quantity should always express a counted number of things, and the

property will be such as total, shipped, loaded, stored. QuantityType

should be used for components that require unit information; and

xsd:nonNegativeInteger should be used for countable components

which do not need unit information.
Rate A guantity or amount measured in relation to another quantity or amount. | Number
Text An unformatted character string, generally in the form of words. String

(includes: Abbreviation, Comments.)
Time A designation of a specified chronological point within a period. Date
DateTime The captured date and time of an event when it occurs. Date
URI The Uniform Resource Identifier that identifies where the file is located. String

[Annex VIl of ST.XX follows]

CwWsS/8/2
Mpunoxexwue, cTp. 71

ANNEX VII

API lifecycle management publication
Final Draft

Proposal by the API Task Force for consideration at the CWS/8

1. This Annex provides a brief overview of API Lifecycle management and suggests key pieces of information that
should be published in a policy document by an IP Office to assist API consumers in understanding how best to use these
APIs.

2. API Lifecycle management is a critical aspect of an API strategy as it provides the framework for the life of an API
from creation through to retirement. It is useful both internally for the developers and operations teams and also externally
for API consumers. For internal developers, it helps create a structure and set expectations for developing an API, and for
the operations teams it assists with the understanding of support requirements. For API consumers, both internally and
externally, it provides an informal contract of expectations for when a particular APl is used. This will become clear as each
stage in the lifecycle is presented below.

3. Published API lifecycles can be comprised of simple 4-step processes or more complex with up to 10 or more steps.
However for the most part, the lifecycles with more steps are considered more detailed versions of the lifecycles with fewer
steps. As such, this document will focus on the basic 4-step process necessary to capture an APl lifecycle: Created ->
Published -> Deprecated -> Retired. Any published API lifecycle document should incorporate at least a description of these
four stages are managed by an IP Office.

Created

Retired API Published

Lifecycle

Deprecated

Created

4. Creating an API focuses on designing, implementing and documenting the API. The critical consideration during the
creation phase is to consider the purpose of the API and the overall structure necessary to ‘future-proof’ the APl as much as
possible. Ideally, the API should adhere to a set of internal and external standards, such those recommendations
incorporated in the current Standard. If the API is to be monetised then consideration should be given at this stage to define
the monetisation strategy.

Published

5. Once an APl is created it needs to be published. It should be versioned using a standard versioning strategy and
documentation should be provided including the API specification and sample requests and responses (see [RSG-64]-[RSG-
65]). Once published, the API is consumed by applications. Note that fixes and enhancements may be incorporated during
the Publish stage.

CwWsS/8/2
Mpunoxexwue, cTp. 72

Deprecated

6. At some point an APl is no longer useful. It has either been superseded by a newer version of an API or is the no
longer relevant, because of some external or internal factor. API Consumers should be contacted and preparation made to
remove the API from the catalogue. At this stage it is likely to only major bugs with the API will be fixed.

Retired

7. This is the stage where the APl is decommissioned. This should include disabling access to the APl and removing it
from API platform. Consideration should be given as to whether “extended support” will be offered or if there are any cases
in which retirement would be delayed.

8. The last two stages are the most important to document in terms of the lifecycle management, the deprecation and
retirement stages. It is critical for APl consumers to understand the expectations placed on them when they start to use an
API to avoid disappointment or challenges when trying to remove an API from the catalogue. This should include, for
example, management of major and minor versions and any timelines for notification of changes. At a high level, there
tends to be two approaches to API deprecation/retirement: either retaining a previously stated number of versions, or
retaining old versions for a specified time period. A combination of these approaches can also be used but either the
number of older versions which are to be supported or the length of time that old versions are retained must be clearly
stated in the published lifecycle document.

[End of Annex VIl and of ST.XX]

[KoHeL, npunoxeHus 1 AOKYMeHTa]

