
TECHNOLOGY TRANSFER: "CHALLENGES, OPPORTUNITIES AND SUCCESSFUL CASES"

Sri Lanka

Eng. D R Pullaperuma Chairman – NERDC (National Engineering Research & Development Centre)

<text><text><text><text><text><text><text>

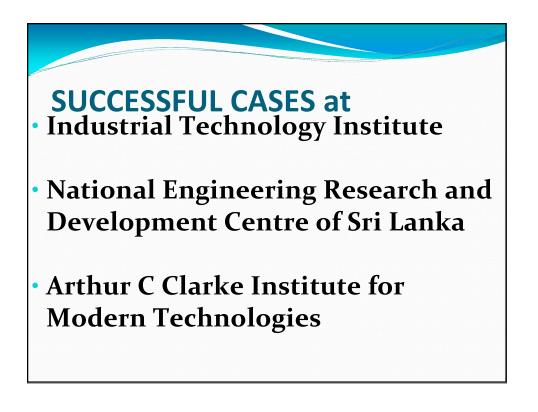
STATUS CORE OF R&D & INNOVATION IN SRI LANKA


• Neglect of R&D commercialization practices in Sri Lanka have severely affected the wealth creating capacity in R&D.

Foreign Contribution to R&D has dropped significantly

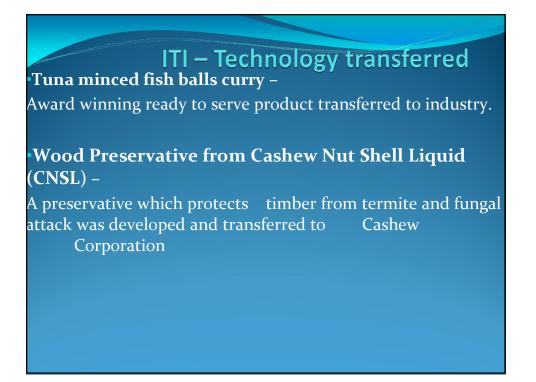
(1996 -22.6% to 2006 - 4.8%)

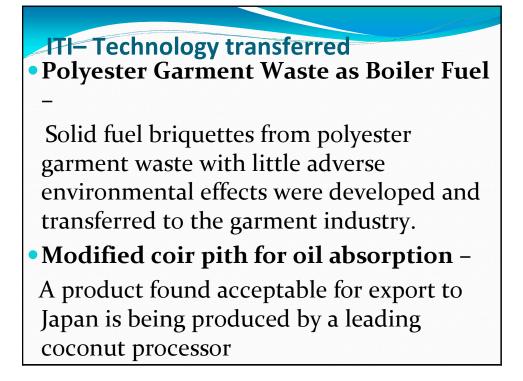
(As such no engagement on cutting edge technology)

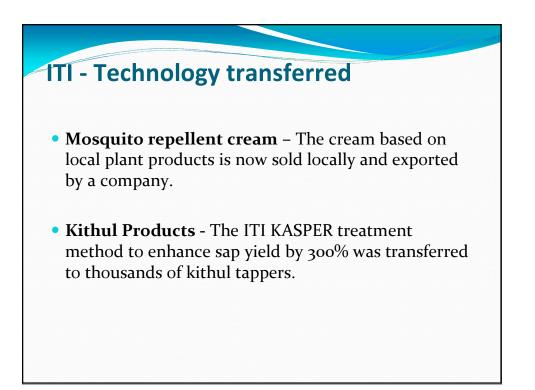


- 1. Contribute towards doubling the per capita GDP and increasing the high tech value added exports from 1.5% to 10% by 2015.
- 2. Well established dynamic world class National Research and Innovation Eco-System.
- 3.An effective framework to prepare the people of Sri Lanka for a knowledge society.
- 4. Sustainability principles entrenched in all spheres of scientific activities.

R&D INSTITUTIONS IN SRI LANKA					
Sector	Research Institutions /University Faculty				
Agriculture	Farm Mechanization Research Centre Institution of Post Harvest Technology Rubber Research Institute Tea Research Institute Coconut Research Institute Agriculture Faculties of Universities				
Marine and Aquatic Resources	NARA				
Industrial and Engineering	Industrial Technology Institute National Engineering Research and Development Centre of Sri Lanka Arthur C Clarke Institute for Modern Technologies				
8					

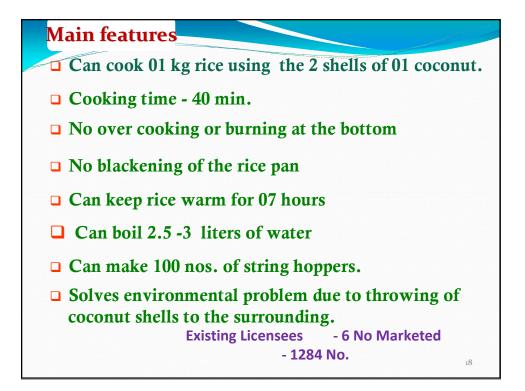

Sector	Research Institutions /University Faculty
Fundamental Studies	Institute of Fundamental Studies
S&T Policy /Funding	National Science Foundation National Science & Technology Commission Council for Agriculture Research Planning




ITI-Technology transferred

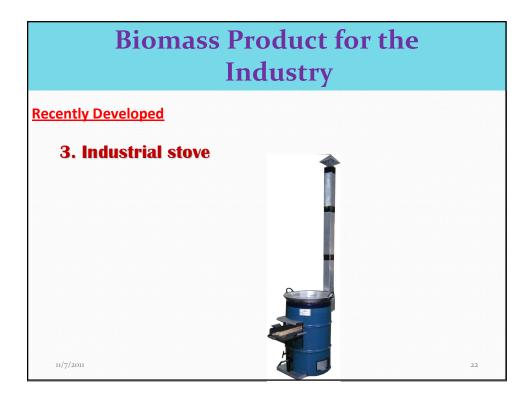
• KOTHALAHIMBUTU BISCUIT–(An Aurvedic herbal plant based) transfered to a Biscuits Manufacturer.

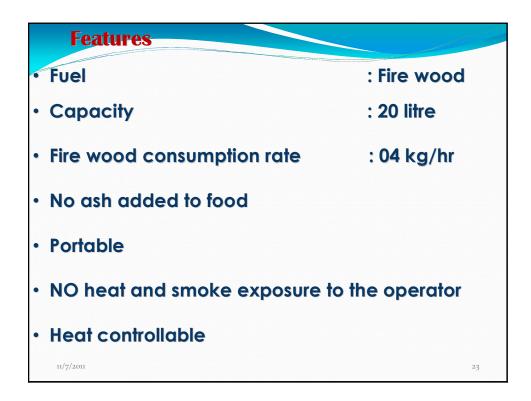
- MASSAK NP An insecticide formulation based on natural product to combat mealy bug and other insects was successfully transferred to an entrepreneur.
- **BTi for mosquito control** BTi formulation was transferred to a Company for manufacturng
- 'Lime Blast' Sports Drink A caffeine free sports drink using natural lime was transferred to a company to commercialize.

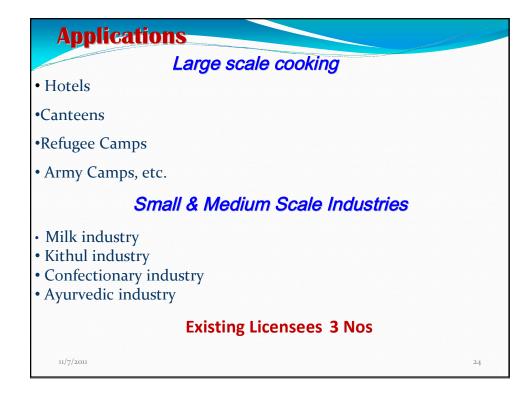


TI–Technology from overseas

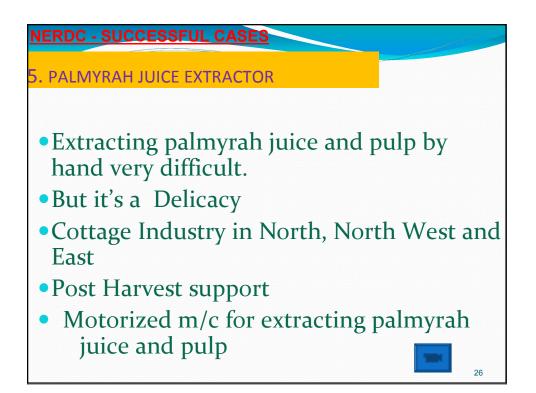
- **Bamboo shoot production and processing** Technology transferred from International Centre on Bamboo and Rattan, China (ICBR) has been successfully used to develop an edible bamboo shoot industry in Sri Lanka with the support of the Common Fund for Commodities (CFC).
- Low cost animal feed from fish waste The processing technology for converting fish waste into protein-rich low-cost feed ingredients (silage) for use in animal and aqua feed was developed with Norwegian funding and transferred to the Ceylon Fisheries Harbours Corporation with a commercial production unit in Beruwela.
- **Coir processing** A US \$ 740,000 project funded by the Common Fund for Commodities (CFC) on improving outdated technology used in the coir processing industry resulted in the setting up of a Test mill at Dunkannawa and improved methods for the production of coconut coir.

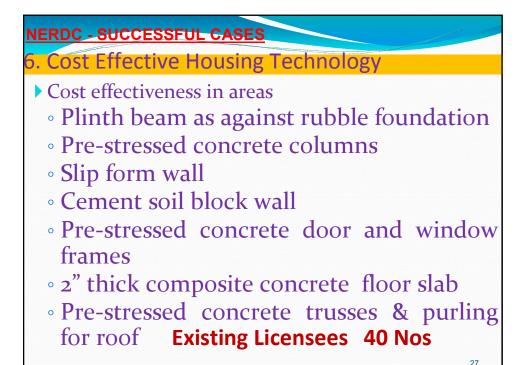


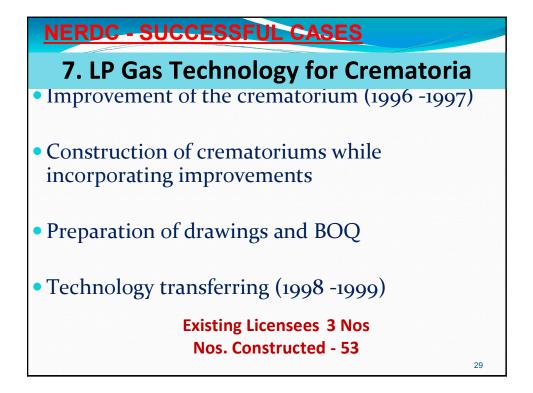




Main features		
Operation type	-	batch
Operating time	-	50 - 60 min.
Capacity	-	600g
Can cook	-	01 kg rice
	or	03 curries
		in one batch
Existing Licensees - 3	Nos	
Nos. Marketed	- 12400	20

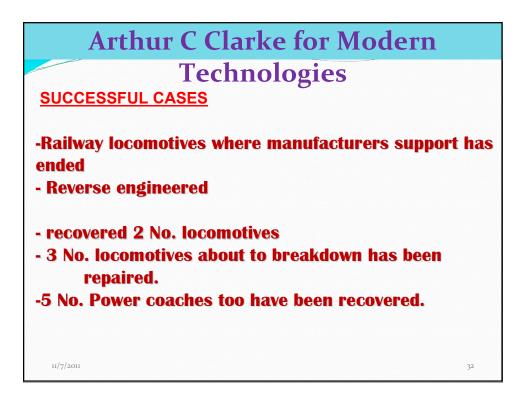





Cost Effective Housing Technology...... COMPRESSED EARTH BLOCK

SUCCESSFUL CASES

- Solution for sand crisis
- Environmentally friendly products
- Freely available, so, less transport problems
- Comfortable environment in house
 (low heat in house)
- Simple technology and simple machines
- 15%-50% cost can be saved
- Creating new empligistingtbicensees 2 Nos



28

		Duration (min)	Process	
L	Charging	-	-	
2	Ignition	15	Combustion of casket starts	
3	Full combustion	30	Combustion of body & casket	
4	Final combustion	45	Combustion of the body	
P				

Another success story - PUBLIC PRIVATE PARTNERSHIP

Good laboratory and IP practices

• Time bound R&D with a strong industry/ business

focus

• Regular monitoring of R&D

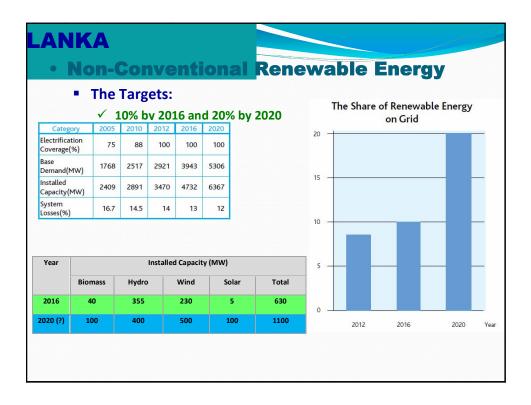
• Local scientists responded to challenge - mindset +

facilities

• 5 US patents filed within 9 months of lab operation

(Sri Lankan average 1-2 US patents per yr)

RE IN PO	OWER SEC	STOR IN	SRI LANKA
			••••••


SUCCESSFUL CASES

• FEEDING TARIFF FOR GRID ELECTRICITY

- For Non-conventional renewable energy sources:
- ✓ Small hydro, wind, biomass Wood, Residues, MSW, Other
- Two options:
- ✓ Three-tier tariff: Year 1-8, Year 9-15 and Year 16+
- ✓ Flat tariff for 20 years

 Flat tariff: 	Technology	All inclusive rate (LKR/kWh) for years 1-20			
	Mini-hydro	13.04			
	Mini-hydro - Local	13.32			
	Wind	19.43			
	Wind - Local	19.97			
	Biomass (Dendro)	20.70			
	Biomass (Agricultural & Industrial Waste)	14.53			
	Municipal Waste	22.02			
	Waste Heat Recovery	6.64			

RE IN POWER SECTOR IN SRI LANKA Non-Conventional Renewable Energy 										
 The Progress: ✓ 225.5 MW, 7% Grid-electricity generation 										
Technology/ Status	Bior	nass	Ну	dro	N	/ind	So	olar	Тс	otal
	No.	MW	No.	MW	No.	MW	No.	MW	No.	MW
Commissioned	2	11	87	183	4	30.15	4	1.38	97	225.5
Energy Permit	15	73	104	206	10	99	-	-	133	379
Provisional Approvals	13	160	90	113	2	20	2	20	107	313

CHALLENGES IN IMPLEMENTING SCIENCE, TECHNOLOGY & INNOVATION STRATEGY Convincing the stake holders to firmly support the implementation Most importantly to set off adequate funds from the national budget To prioritize the action plans based on funds to be allocated To focus the research training to advanced technologies Initially to focus on training of 725 personnel over the next 5 yrs.

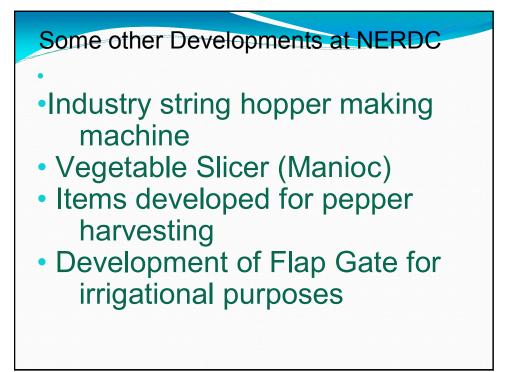
CHALLENGES IN IMPLEMENTING SCIENCE, TECHNOLOGY & INNOVATION STRATEGY

- Very low output of Postgraduate research degrees by the Sri Lankan Univ. (<100/yr)
- Very low Univ. academics engaged in R&D(5-20 %)
- Mere 21% R&D personnel in the engineering disciplines affecting the capacity for technological development

RESEARCHERS PER MILLION INHABITANTS

CHALLENGES IN IMPLEMENTING SCIENCE, TECHNOLOGY & INNOVATION STRATEGY

- Need to Increase Research job opportunities
- (Establish 'Full time' Researcher Cadre)
- Significant brain drain due to low remuneration and lack of a conducive environment for R&D for S&T personnel
- Establish a scheme to obtain services of Sri Lankan expatriates and foreign scientists


CHALLENGES IN IMPLEMENTING SCIENCE, TECHNOLOGY & INNOVATION STRATEGY

- Line Ministries, R&D Functions to be coordinated
- HR Developments to be streamlined and to focus research training on specified advanced technologies even though Researchers are in other line ministries

SOME ENVIRONMENTAL ISSUES AROUSED FROM NERDC

Location of crematorium	Status	Nature of protest	Actions taken
Batheegama P/S	Crematorium building was under construction	On possible environmental consequences	Forwarded a report after inspecting the site (by Ajith Jayassoriya)
Nattandiya P/S	Crematorium was in operation	On nuisances created by flue gasses	Recommended increasing of stack by 12ft.
Kurunegala P/S at Wanduragala	Building had been constructed	On possible environmental consequences Court issued an order to suspend construction. CEA had produced a report to court.	We forwarded a report explaining the technology of the crematorium and measures included to minimize environmental pollution. And recommended to increase the volume of cremation chamber by

