University IP-based Start-ups

The University as a Participant in the Innovation Ecosystem and How Can Governments support it?

Regional High-Level Summit for University Presidents and Senior Policy Makers on EIE

Osaka, Japan November 25-27, 2019 Dr. Ashley J. Stevens President

Organized by

In Co-operation with

Some International Teaching / Strategic Assignments

- Téthys, Egypt
- G-TEC, Japan
- Research Norway
- Department of Biotechnology, India
- UTEN, Portugal
- IC2, Colombia
- SARIMA, S. Africa
- AUTM-CORFO, Chile
- KFUPM, Saudi Arabia
- Umm Al-Qura University, Saudi Arabia
- Slovak Center for Scientific and Technical Information
- Thailand Center of Excellence in Life Sciences
- NUS (Suzhou) Research Institute, China
- WIPO Bulgaria, Estonia, Iran, Malaysia, Philippines, Serbia, Sri Lanka,
 Thailand, Vietnam

Agenda

- Scale of public sector innovation regionally
- Tech transfer's horrible business model
- The implications of this business model
- □ The good news innovation is everywhere
- □ The issues with tech transfer in emerging economies
- Some solutions

Current Patenting Activity By Universities

Country/Economy	Number of	Number of	0/
Country/Economy	Institutions	Patents	<u>%</u>
US	66	4,248	73.0%
Taiwan	9	492	8.5%
S. Korea	8	269	4.6%
China	2	268	4.6%
Israel	4	146	2.5%
Japan	4	124	2.1%
Saudi Arabia	2	110	1.9%
Hong Kong	3	79	1.4%
Canada	1	31	0.5%
Switzerland	1	28	0.5%
<u>India</u>	<u>1</u>	21	0.4%
Total	101	5,816	

Global Patterns Of Innovation In 2013, A.J. Stevens, Technology and Innovation, 17:4, 159-167(9), 2016 © 2014-19 Ashley J. Stevens All Rights Reserved. Do not modify or copy.

Current Patenting Activity By National Labs / Research. Institutes

	Number of		
Country/Economy	<u>Institutes</u>	Number of Patents	<u>%</u>
US	16	1,527	36.1%
S. Korea	2	933	22.1%
Taiwan	3	599	14.2%
France	3	460	10.9%
Germany	1	181	4.3%
Japan	2	138	3.3%
Belgium	1	88	2.1%
Singapore	1	66	1.6%
Australia	1	55	1.3%
India	1	55	1.3%
Holland	1	43	1.0%
<u>Saudi Arabia</u>	<u>1</u>	_42	1.0%
Total	34	4,227	

© 2014-19 Ashley J. Stevens All Rights Reserved. Do not modify or copy.

Technology Transfer – a Horrible Business Model

- Hire and pay staff
 - Must be comfortable operating in the fog of uncertainty of early stage technologies
- □ Train them to change the culture of professors/scientists
 - Start to identify useful inventions coming from their research
- Pay for patent applications on the inventions they eventually disclose
- Market the inventions
 - Inventions typically 4 years old when licensed
- Eventually license 25% of the inventions
 - Write off the investment in the rest
- Wait while the licensees develop the inventions into products to sell
 - Some technologies don't work or aren't cost effective
- □ Finally start to receive royalties on the successful inventions
 - Give away 75-100% of the income
 - Wait for the patents to expire

Issues I've Identified in Developing Countries¹

- Innovation is everywhere
- Universities lack scale in many countries
- Technology transfer's awful business model
- The Triple Helix model isn't understood
- Companies don't look domestically for innovation
- Licensing experience isn't a major part of commerce
- Risk capital isn't available
- Legal structures may not be suitable
- Local expertise grows from the ground up
- Keeping the local stars local
- ¹ "An Emerging Model of Life Sciences Commercialization", Ashley J. Stevens, *Nature Biotechnology*, <u>35</u>, 605-613, July 2017

Implications

- Years till self supporting
 - In U.S. in 2006:1
 - □ 52% of institutions spent more than they brought in
 - Only 16% of institutions kept enough money to cover operating costs
 - Modeled it since using AUTM Survey data
 - Not much better

¹ "How are U.S. Technology Transfer Offices Tasked and Motivated—Is It All About the Money?", I. Abrams, G. Leung and A.J. Stevens, Research Management Review, Volume 17, Issue 1, Fall/Winter 2009

Implications

□ If tech transfer is such a big deal, why does it lose money?

- □ If a tech transfer office is doing a good job
 - Lt'll get a 2-5% royalty on sales
 - □ Or own 2-5% of a start-up company that gets sold
- □ So, 95-98% of the economic impact will be outside the university
 - □ In the private sector
 - Which supplied the investment to develop the technology

Implications

- This isn't about making money
 - □ It's about the economy
- Which is why governments should support tech transfer at their universities
 - □ It should be considered part of the country's core economic infrastructure
 - Like airports, railways, roads, internet etc.
- Support particularly important in the early stages
 - Typically for 10 years
 - Canada, Denmark, France, Japan, UK, Chile
- Many of the inventions that come from emerging country economies target local problems, opportunities and issues

Innovation is Everywhere

- The current generation is highly entrepreneurial
 - Globally
- Great project ideas everywhere
 - Chile
 - Colombia
 - Egypt
 - Portugal
- Business development skills can be taught
 - □ IC²
 - SRI
- Someone has to pay for this

Universities Lack Scale in Research

□ First priority for universities is undergraduate tuition

- Graduate programs much smaller
 - Doctoral programs often even smaller
 - Best and brightest go overseas for graduate training
 - Will they come back?

Example – Chile

AUTM-CORFO strategic partnership

- Phase 1 Training
- Phase 2 Strategic planning
 - **7** AUTM Experts hired

□ 6 U.S., 1 U.K.

- 14 universities, I National Lab
 - Benchmarking
 - AUTM Survey
 - Purchased additional survey questionnaire
 - 5 year Strategic Plan
 - □ I year Operating Plan
- Phase 3 Six additional smaller universities
 - □ Really, really small
 - □ 1 had a research budget of \$900k and didn't offer Ph.D.'s!

Benchmarking

Chile:

Low level of intellectual property creation in Chile

~600 patents per year

- Individuals receive more patents than companies
- Relatively low level of academic research compared with US
 - □ If Chile was a single university, would rank 103rd in US (Tulane)
 - Largest, Concepcion, would rank 156th (Whitehead Institute)
- Inventions are related to research funding
 - \square More research \clubsuit more inventions

Benchmarking

Chile:

But Chile more productive than US, Canada and Europe

- □ 1 invention/\$1.1 million
 - US 1 invention/\$2.8 million
 - Canada 1 invention/\$3.0 million
 - □ Europe 1 invention/\$3.6 million
- □ 4% licensing success rate
 - Same as US pre-Bayh-Dole
 - Government owned and licensed IP
- Expenditures on patents 3x license income

Benchmarking

- These results expected for a country just starting to create a technology transfer ecosystem
 - Denmark 2000
 - □ Japan 1999-2004
- Scale issue meant the right solution for Chile was
 - 2-3 individual TTO's
 - Regional entities for the rest
- Not what government wanted
 - Prior attempt had failed
 - But it wasn't regional included universities in Santiago + Valparaiso
 - Included the universities which could justify their own TTO
- Government now implementing this model

- Three regional TTO's
- All universities belong to one of the three

© 2014-19 Ashley J. Stevens All Rights Reserved. Do not modify or copy.

The Triple Helix Model Isn't Understood

- In many emerging economies, Governments see universities solely in workforce development terms
 - Not as sources of
 - Innovation
 - Entrepreneurship
 - Economic development
 - Hence low funding of research
- University leadership doesn't understand their role in an innovation ecosystem
 - Decision making is highly centralized
 - Loathe to delegate commercial decisions to TTO
 - Slows process
 - Results in "academic" decisions

Risk averse

© 2014-19 Ashley J. Stevens All Rights Reserved. Do not modify or copy.

Companies Don't Look Domestically for Innovation

- Industrial leaders in developing countries frequently look overseas for innovation and new technology
 - □ U.S.

Europe

- Don't look at local technology suppliers
 - Particularly not local start-ups
 - E.g., Chile / Mining
 - Swiss and German engineering companies supply innovation
 - Universities are active in these areas
 - Maybe some testing done at universities

Licensing Isn't a Major Part of Commerce

- Commerce in developing countries is product focused, not IPfocused
- So, not much expertise in licensing and transferring IP
 - Even in the commercial sector
 - Let alone the academic sector
- LES only has 32 national and regional societies
 - □ Those in emerging economies / regions often have little activity
 - Members often all lawyers
 - □ Few corporate members
 - □ No academic members
 - □ E.g., LES Chile
 - Established 2007
 - 30 members
 - No activities currently planned

Risk Capital Isn't Available

Angel investment usually limited to market-ready projects

- Not useful for technology development
- E.g., in incubator in Talca, Chile
 - Companies were raising \$10,000 \$50,000 per round
 - Only one company raised \$100,000
 - □ That was the only one that had taken off
- No equivalents of SBIR / STTR programs
- Limited VC funds
- Philanthropic sources scarce
 - Generally limited to basic and clinical research
 - Not risk reduction

Risk Capital Isn't Available

Even resource rich countries have issues

- Early stages of innovation need very small amounts of money
 - Get's lost in the rounding
- How funding is managed is critical
 - Skills may not be available
 - Resource-based economies don't have to deal with market risk
 - Extract it and there's a global market waiting
 - □ It's all about engineering risk
 - Different from technical risk of early stage technologies

The Issue is Exits

- The only reason someone invests in a company is in the hope of selling that investment at a profit
 - Not interested in dividends
 - □ The higher the risk, the higher the profit they want
 - VC's won't invest unless they can see a 10x return
 - Only expect to make that much on 1-2 out of 10 investments
 - Only two routes to exit
 - □ M&A
 - □ M&A
 - Often companies look overseas for innovation, not domestically
 - IPO
 - Emerging companies have weak capital markets
 - Particularly for development stage companies
 - □ NASDAQ an option for a very, very few.

Expertise Grows from the Ground up

- The people who run incubators are critical
 - □ They know where the local sources of risk finance are
 - They're the *de facto* local entrepreneurship business schools
 They've seen what works and what doesn't work in that country
 - □ They know the local companies that are receptive to innovation
 - They can plug into international organizations
 - NBIA
 - IASP
 - AURP
 - AUTM

Keeping the Local Stars Local

Best and brightest often go overseas for graduate school

- Frequently want to stay and not return
 - Better professional opportunities
 - Entrepreneurial opportunities
- Critical to get them to come back
 - Bring back what they've learned

Some Solutions

- Fellowships
- Joint projects
- International partnerships
- Strategic partnerships
- Seeding Labs
- □ Form a local tech transfer organization

Fellowships

- Tech transfer people come and work in a U.S. / European TTO for 3-6 months
 - □ Needs some sort of sponsorship for living expenses and travel
 - □ Typical cost ~\$20,000 for a six month fellowship
 - Universities want some overhead support
 - □ \$5,000-6,000 for a six month fellowship
- Effective
 - Forms lasting bonds and networks
 - Big exposure to best practices
- Opportunity to form ex-pat networks

Joint Projects

Long term research collaborations

- **Tech transfer component**
- E.g., MIT with:
 - Cambridge U.K.
 - King Fahd University of Petroleum and Minerals, Saudi Arabia
 - Skoltech Institute of Technology, Russia
- Requires massive government support

International Collaborations

Inter-Governmental

U WIPO

EIE

Emerging and Transitional Countries

WIPO Academy

World Bank

Serbia

EU

□ Structural Funds – Serbian, Bulgarian experience

APEC

- Non-Governmental Organizations
 - British Council / Newton Fund

International Collaborations

- Governmental:
 - US
 - USAID
 - Research Triangle Institute program in the Philippines
 - Dept. of Commerce
 - - Tech Transfer Fellowships
 - AUTM Scholarships
 - NSF iCorp program
 - George Washington University iCorp Center has \ 'Franchised' the program
 - □ Korea; Philippines, etc

Strategic Partnerships

□ E.g., AUTM – CORFO

Requires the Government to "get" the Triple Helix model

□ And be prepared to fund it

Programs are expensive

~\$500,000

© 2014-19 Ashley J. Stevens All Rights Reserved. Do not modify or copy.

Forming a Tech Transfer Association

- Brings together like-minded people
 - □ Should be practitioner driven and run
 - Not commercial or government
 - Government support helpful / essential
- Forms a locus for interaction with government
 - Policy gap analysis / policy development
- Point of contact for international interactions
 - ATTP
- Successful models
 - SARIMA
 - FORTEC
 - USIMP

Thank you for listening

Questions?

astevens@bu.edu

© 2014-19 Ashley J. Stevens All Rights Reserved. Do not modify or copy.