Important Issues Regarding Technology Transfer Office Funding and Operations

Regional High-Level Summit for University Presidents and Senior Policy Makers on EIE

Osaka, Japan November 25-27, 2019

Ashley Stevens President, Focus IP Group, LLC Cengiz Tarham

Tarhan Associates Limited

Organized by

In Co-operation with

Agenda

- Staffing issues
- Patent strategy
 - Managing outside law firms
 - Funding patent expenses
- Technology Transfer Office budgeting and funding
- Managing faculty expectations
- Communicating value to stakeholders

Staffing Issues

- □ The importance of the full-time Director
- Skill sets of staff
- Other staffing requirements

The Full Time Director

- Single most important person
- Needs a unique skill set
 - Comfortable with science
 - Comfortable with business
 - Out-of-the-box thinker
 - Great communicator
 - Multi-tasking
 - Diplomat

The Full Time Director

- □ In U.S., first generation of Directors were either:
 - □ From sponsored programs offices
 - Had to negotiate IP clauses for company sponsored research agreements
 - Patent attorneys
 - Understood IP
 - Could negotiate and complete license agreements
- Second generation, typically from business side of high tech companies
 - Understood importance of IP
 - Deal-making experience
 - Understanding of start-ups
- Ph.D. a plus
 - □ Faculty respect a Ph.D.
 - 📮 Or an MBA

The Full Time Director

- In some emerging tech transfer ecosystems, tech transfer initially managed by a faculty committee
 - At some point a faculty member becomes full time Director
 - Benefit is credibility with fellow faculty
 - Need to sell them on this new activity

Skill Set

- Tech transfer people are special people. They need to be:
 - An inch deep and a mile wide
 - They have to be able to have a productive conversation about a wide spectrum of technologies
 - □ Faculty are a mile deep and an inch wide
 - Our role isn't to question the science
 - Our job is what can the science do and will it work in the real world
 - Open minded and creative
 - There is no "one-size-fits-all" in technology transfer
 - Different technologies will need very different commercialization models
 - Comfortable operating in the fog of uncertainty of embryonic academic inventions
 - Inventions will likely have only the faintest glimmerings of a product or service

Skill Set

- Tech transfer people need to be:
 - Diplomats
 - Faculty have tenure
 - We don't
 - □ US universities only file on ~50% of invention disclosures
 - □ Only license ~50% of the inventions we do file on
 - $\square \rightarrow 25\%$ licensing success rate overall
 - Most of the time, have to be able to tell faculty that their baby is ugly and nobody wants it
 - And live to tell about it
 - Organized
 - Will be overworked
 - High case load
 - A tech transfer office marches on its paperwork / electronic records
 - □ Have to leave records that others can pick up on when they leave

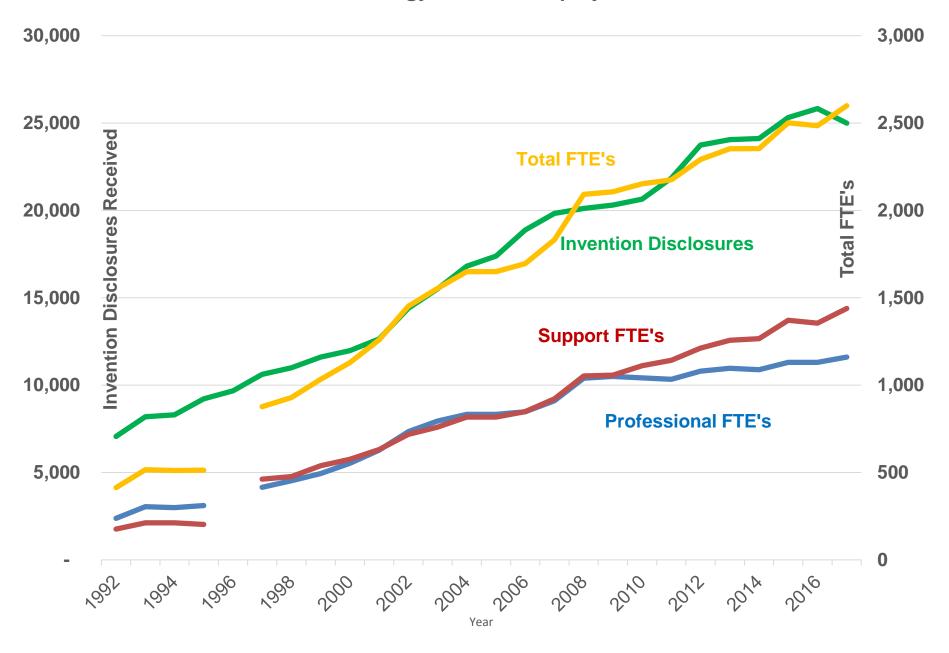
Skill Set

- □ Tech transfer people need to be:
 - Skilled negotiators
 - We're playing a weak hand
 - Unproven, unvalidated technology and markets
 - Generally only a single potential licensee

"A hot academic technology is one two companies are interested in"

Lita Nelsen, MIT

- Negotiating theory 101 says "You have to be able to threaten to walk away and mean it."
- □ If you don't have a plan B you can't make the threat
 - And mean it



Staff Requirements

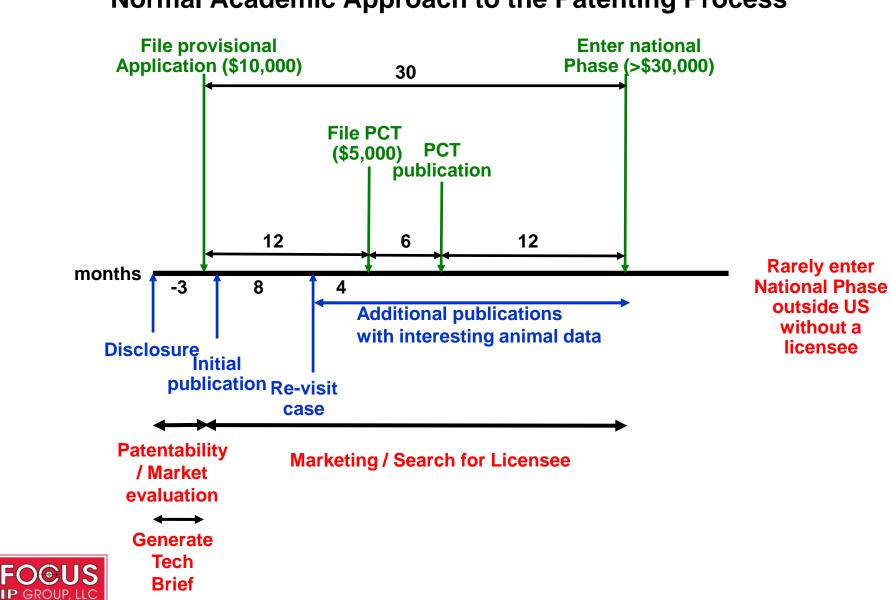
- Entry level often grad students
 - Some go on to law school and become IP attorneys
 - Some take their IP and licensing experience and go to companies
- Need to balance executive staff with sufficient administrative support
 - AUTM Survey for 2017 showed 25% more Support FTE's than Professional FTE's

Technology Transfer Employment in U.S.

Staff Requirements

- Entry level often grad students
 - Some go on to law school and become IP attorneys
 - Some take their IP and licensing experience and go to companies
- Need to balance executive staff with sufficient administrative support
 - AUTM Survey for 2017 showed 25% more Support than Professional
 - Free up professional staff to manage inventions and do deals
- Staff numbers will need to grow as activity grows
- Training for entry-level personnel critical
 - Initially through international sources
 - □ Local tech transfer association should progressively take over

- Objectives:
 - Get appropriate protection
 - Minimize cost
- Appropriate protection
 - What sort of invention do you have?
 - Global potential?
 - Need to get global protection
 - □ Local / regional potential?
 - Local / regional protection sufficient
 - Petit patent / utility model may be adequate


Must file initial patent application before any public disclosure

- Publication
- Presentation at a conference
- Presentation to a meeting with a company
 - Unless a CDA is in place
- Put on sale
- Otherwise, severely limited options for patent protection
 - US, Canada, Japan
- Need to have procedures in place that are seamless and won't delay faculty publication
 - Disclose early and disclose often

- □ After initial patent application, 12 months to file a PCT
 - Single filing, through WIPO, that secures the right to file in any country in the world
 - Time to do more evaluation of the technology
- PCT will publish 6 months later
- International Search Report
 - First look at prior art status
- 18 months later, National Phase entry
 - Time to market the technology
 - Obtain licensee

Normal Academic Approach to the Patenting Process

Key TTO Operating Issues

TTO Budgeting

Two areas of expense

- Patent costs
- Personnel costs
 - □ In U.S., ~ 50% : 50%
- Biggest challenge is patent budgeting
 - Must manage tightly
 - Cost can rise asymptotically if not tightly managed
 - Significant % of expenditures reimbursed by licensees
 - Sunk costs incurred prior to the license
 - Generally paid at closing
 - On-going costs of prosecution
 - Generally best for university to pay the law firm bills and immediately bill the licensee
 - Budget should be based on net expenses after all reimbursements

Patent Cost Budgeting

- Two types of patent costs
 - Law firm costs
 - □ The majority of the costs
 - Patent office costs

Law Firm Management

- At a major OTL, there will be hundreds of law firm actions per year
 - Each one has a cost
 - □ Minimum billing time is generally 6 minutes (0.1 hours)
 - For a lawyer charging \$600/hour, a short phone call costs \$60
- Most OTL's negotiate either:
 - Fixed fees for each specific type of action; or
 - "Not to exceed"
 - Hourly rate up to a limit

Law Firm Management

- Biggest costs of patenting are:
 - Preparation and filing of initial patent application
 - □ Generally ~50% of total cost of getting a patent
 - USPTO office fees generally reasonable
 - PCT fees reasonable
 - National phase entry
 - 30 months after filling initial application
 - EPO
 - Substantial filing fees
 - Substantial annual maintenance costs
 - Japan, China
 - Substantial translation costs

Expense Budgeting

Patent actions are reasonably predictable

- Once a patent application is filed, there are predictable deadlines
 - e.g., If initial application is a US provisional application, one year later:
 - Conversion of US provisional application to US utility application
 - and / or
 - PCT filing
- Biggest variable is time to initial office action
 - □ The "Backlog"
 - □ Currently ~3 years in the US
 - □ When examination starts, examiner sets a time to respond
 - Can be extended by payment of late fees
 - Avoid at all costs

Patent Budgeting Process

Iterative

- □ What would we spend if we did everything?
- □ What will the university let us spend?
- Which cases do we want to spend it on?
- Continuous
 - Set budget and priorities prior to start of the budget year
 - Update monthly
 - Reset priorities
- Labor intensive
 - Requires substantial efforts by all members of the TTO
 - Requires substantial effort by law firms
 - Get them to agree to not charge for annual budgeting in Engagement Letter

Budgeting Other Operating Cost

Generally straightforward and predictable

- Salaries
 - Evaluations and raises before start of budget year
- Operating costs
 - Travel
 - Tools and databases
 - Predictable

Sustainability

- Yesterday we talked about how 95% of the economic impact of tech transfer is in the private sector
- Later today I'll talk about how business model of tech transfer is even worse than that
 - And why your government should support your tech transfer efforts

The Bottom Line – Red Ink

Financial ContributionNumber%Loss making

Gross profitable

Net profitable

Self sustaining

Total

Source: Abrams, Leung & Stevens, 2010

Sustainability

- □ The path to sustainability will be long and slow
- Government support will be necessary
 - Even in Developed countries, governments have supported tech transfer for 10+ years

Managing Faculty Expectations

Managing Faculty Expectations

- Why should faculty get involved in commercialization?
- Managing their expectations
- Benefit sharing

There's a Lot in it for Them

- Lt's highly satisfying to see science have an impact beyond academia
 - Giving back to society
- Lt can bring additional resources into their scientific enterprise
 - New funding
 - Access to new technical capabilities
 - New collaborators
- It can create new avenues of research
 - Identify new problems that need to be solved
- It can create job opportunities for their grad students
 - Existing companies
 - Start-up companies
- And, finally, they may just get really, really rich
 - Shmuel Cabilly (City of Hope), Synthetic antibodies: Royalties \$2 billion
 - Richard Silverman (Northwestern), Lyrica: Royalties \$2.9 billion
 - □ 33% * \$3 billion = \$1 billion!

Will Involve Changing the Culture

Only the culture

- Not the type of research they do
 - Breakthrough inventions come from basic science
 - Not from applied science
- They'll need to start thinking about the implications and applications of their science
 - Spend time with TTO
 - Patent attorneys
 - Companies
- □ Important that senior management is seen to be supportive
 - In some U.S. universities, commercialization is a factor in tenure and promotion

Culture

Most faculty <u>DON'T</u> participate in the technology transfer process¹

Career Disclosures	<u>%</u>
Never	64.2
Once	14.8
Twice	7.6
Three to five	11.4
Six or more	2.0

¹ Thursby, J. G. and M. C. Thursby (2003). Patterns of Research and Licensing Activity of Science and Engineering Faculty. Working Paper. Atlanta, GA, Georgia Institute of Technology., available at: <u>http://hdl.handle.net/1853/10723</u>

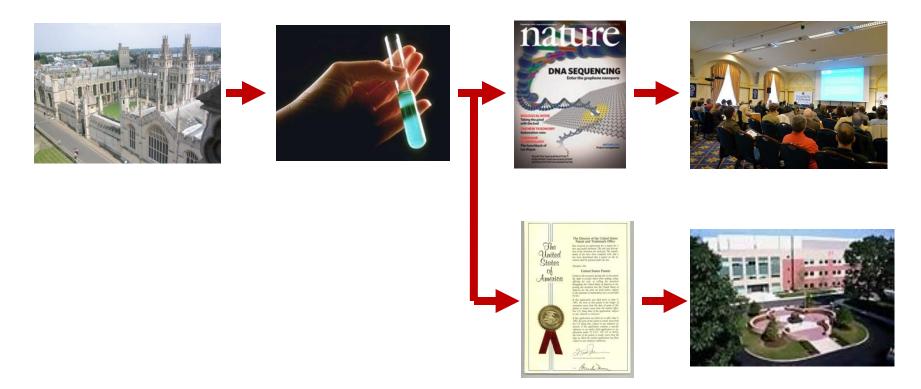
But the Best Scientists Do

Nobel Prize Winners* with	%
Patents	<u>70</u>
Physics	44%
Chemistry	77%
Physiology or Medicine	78%

* Winners of Nobel Prize from 2001 to 2013

Source: Qingzhi Zhang, Collette LaFlamme, Trent Merrell and Ashley J. Stevens, Unpublished Data

Has The Nature of Academic Research Been Changed?


- Publication rate doubled over course of study
- Disclosure rate went from 1% to 10% of faculty per year
- No change in "basic" vs. applied" balance of research, as measured by journals published in

Thursby and Thursby, ibid

The Thrachteion Science fit if Ra Particuling m

The scientific pathway

The commercial pathway

The New Scientific Paradigm

The "Patent-Paper-Pair"

- Fiona Murray, MIT
 - 50% of papers in Nature Biotechnology 1997-1999 had a corresponding patent¹
- 33% of biotech papers in Science and Nature had a corresponding patent²

- 1 Murray, F., Stern, S., Do Formal Intellectual Property Rights Hinder the Free Flow of Scientific Knowledge? An Empirical Test of the Anti-Commons Hypothesis, *Journal of Economic Behavior and Organization* (2007), doi:10.1016/j.jebo.2006.05.017
- 2 Lebovitz, R. M. (2007). "The Duty to Disclose Patent Rights." <u>Northwestern Journal of Technology and</u> <u>Intellectual Property</u> **6 (Fall 2007)**: 36-45.

Will Involve Changing the Culture

Incentives will be very important

- Revenue sharing
- The ability to start a company
 - And own shares in it
 - □ While staying a professor
 - Mechanism to do this is to have a formal consulting policy
 - □ In U.S. and U.K.
 - □ Faculty get 1 day per week to consult
 - Keep the compensation for themselves
 - Can't use university facilities, staff or students
 - That needs a sponsored research agreement
 - If they start a company, commit their 1 day / week to the company for some period of time
 - Get shares in company in lieu of cash payments

Revenue Sharing

- IMHO, the ideal revenue sharing formula is Partners Healthcare in Boston
 - Massachusetts General Hospital and Brigham & Women's Hospital
 - □ Two biggest teaching affiliates of the Harvard Medical School
 - \$1.7 billion research funding in 2018
 - □ (~2x Harvard)
 - Distribution formula:

50% to the Inventor 50% to the Institution

Revenue Sharing

• Other approaches:

Tiered distribution

- Give more / all of first income to faculty
- Less of higher amounts
 - **e**.g.:
 - 100% upto \$100,000 (cumulative)
 - **50% \$100,001-\$250,000**
 - □ 25% \$250,000 and up
- Higher percentage in early years
 - e.g., Chinese law of October 2015 distributes 70% to faculty
 - □ Many U.S. universities distributed 50% in early years

Now 25-40% is the norm

Changing in favor of the institution down the road may not be popular

Grandfather – disclosures before the change get the old rate

Revenue Sharing

- Important to protect students and research staff who contribute to inventions
 - An inventor is someone who contributes to at least one claim of a patent
 - Patent attorney should make determination
 - □ Not all authors of a paper make inventive contributions
 - Many universities have a policy of equal shares unless all inventors sign a piece of paper agreeing to an unequal split.

Perception of TTO

Must be seen by faculty as making a contribution and helping them "I'm from administration and I really am here to help you"

Technology evaluation

- Ten Pont Technology Scoring Template is a core principle of the EIE Mentoring process
 - □ The vehicle by which we tell faculty their baby is ugly

"Here's what I found, and it doesn't look good. What did I miss or not understand?

- Allows us to make intelligent filing decisions
- Manage patenting costs
- □ If we decide not to move forward, offer it back to them
 - They develop at their own expense and keep all revenues
- The Tech Brief
- Marketing the technology

Communicating Value to Stakeholders

Communicating Value to Stakeholders

Claim every victory

- Early ones will be small
 - We received a patent for [invention]. Here's what it has the potential to do for people
 - We've started [StartUp] to develop our [invention]. It's located in our incubator. Here's what [invention] has the potential to do for people
- □ Then they'll get bigger
 - [BigCo] has signed a license to develop our [invention]. Here's what it has the potential to do for people.
 - [StartUp] has received [\$x million] to develop our [invention]. It's located in our incubator. Here's what [invention] has the potential to do for people

Communicating Value to Stakeholders

Claim every victory

- □ Then they'll get even bigger
 - BigCo has started selling [product] based on our [invention]. Here's what it does for people.
 - [StartUp], which was developing our [invention] has been bought for [\$yy million] by [BigCo]. It started its life in our incubator and now employs [z] people. Sales of [product] which does [aa] for people, were [\$bb million] in 2019
- Focus on the stories
 - Not the numbers
 - □ Focus on how you're helping people and the economy
- A Professional Association will collect data and stories and will be a vehicle to publicize individual institutional success stories

Thank you for listening

Questions?

astevens@bu.edu

