

E

WIPO/CR/WK/GE/11/3
ORIGINAL: ENGLISH

DATE: NOVEMBER 8, 2011

Workshop on Using Copyright to Promote access to
Information and Creative Content

Geneva, November 16, 2011

USING COPYRIGHT TO PROMOTE ACCESS TO INFORMATION AND
CREATIVE CONTENT. SOFTWARE DEVELOPMENT PRACTICES
(Part II)

prepared by Rishab Aiyer Ghosh1

1
 The views and opinions expressed in this Study are the sole responsibility of the author. The Study is

not intended to reflect the views of the Member States or the WIPO.

WIPO/CR/WK/GE/11/3
page 2

TABLE OF CONTENTS

1. Introduction 3

2. IPR regimes for software: Copyright, Open Source and Limitations and Exceptions 4
2.1. Software Copyright 4
2.2. Mechanics of rights protection. 5
2.3. Rights claimed by open source developers 6
2.4. Models of open source licensing 6
2.5. Conditions and “reciprocity” 7
2.6. Reciprocity and collaboration 8
2.7. Reciprocity and incentives 9
2.8. Reciprocity as a framework for disclosure 10

3. Open source strategies for local development: economic aspects, incentives, costs and
benefits 11
3.1. Skills development: Informal apprenticeships benefitting employers 12
3.2. Building local ICT competencies 14

4. Legislative findings and policy options 16
4.1. Legislative and policy measures to support wider access to software 16
4.2. Fiscal measures 18

5. Supporting software development: summarized case studies 18
5.1. Sahana: Disaster Management in Sri Lanka, Peru and Haiti 20
5.2. Ushahidi: Mapping and visualization in Kenya and Chile 24
5.3. KhmerOS: Localization and software training in Cambodia 26
5.4. IT@Schools: Computerizing state schools in Kerala, India 32
5.5. Open Source Observatory and Repository (OSOR): Facilitating knowledge sharing
and communit y building in Europe 37
5.6. Softwarepublico: Brazilian Government Software Portal 41

6. Conclusions and Recommendations for WIPO's role 42

7. Glossary of common acronyms 45

WIPO/CR/WK/GE/11/3
page 3

1. INTRODUCTION

Recommendation 19: To initiate discussions on how, within WIPO’s mandate, to further
facilitate access to knowledge and technology for developing countries and LDCs to foster
creativity and innovation and to strengthen such existing activities within WIPO.
Recommendation 24: To request WIPO, within its mandate, to expand the scope of its
activities aimed at bridging the digital divide, in accordance with the outcomes of the World
Summit on the Information Society (WSIS) also taking into account the significance of the
Digital Solidarity Fund (DSF).

Recommendation 27: Facilitating intellectual property related aspects of ICT for growth and
development: Provide for, in an appropriate WIPO body, discussions focused on the
importance of intellectual property related aspects of ICT, and its role in economic and
cultural development, with specific attention focused on assisting Member States to identify
practical intellectual property related strategies to use ICT for economic, social and cultural
development.

WIPO Development Agenda, A/43/16

The WIPO General Assembly, in formulating the Development Agenda, recommended
actions as cited above, to investigate how access to knowledge and technology for
developing countries and LDCs could be facilitated. This Study aims to examine the practical
strategies used in Member States to support economic, social and cultural development
through the application of copyright regimes to software development practices. Drawing on
numerous quantitative surveys of software use in developing countries, this Study focuses in
particular on the economic aspects of software development under alternative models of
copyright, i.e. open source software. The Study also examines specific cases of public
policies, strategies and public institutional support of models for software development that
facilitate wide access of software.

The treatment of software under copyright regimes has particularities which affect how public
policies can address economic, social and cultural development issues. This Study therefore
commences with a discussion of the treatment of software under IPR regimes; specific
exceptions and limitations available or utilized; the alternative development model of open
source software, which is in fact founded on copyright law.

An analysis of economic aspects of the open source software model follows, examining the
incentives, costs and benefits from the perspective in particular of developing countries.
Empirical evidence on economic and policy aspects of open source is then examined,
drawing on numerous quantitative surveys and studies from Africa, Asia, Latin America,
Europe and North America. This discussion is followed by an outline of legislative, fiscal and
other measures that could be used to support software development, including a taxonomy of
possible policies, and actually implemented policies across the world.

This is followed by a qualitative (and necessarily subjective) summary of selected case
studies from different countries. A key factor in selecting the cases was their suitability for
reproduction and transfer to other domains and regions, and the availability of public
documentation and dissemination of information. In this regard, specific case studies were
selected for initiatives that originated in certain countries and were actually reproduced in
other parts of the world.

WIPO/CR/WK/GE/11/3
page 4

Finally, conclusions are drawn regarding the policies that should be considered by Member
States in order to facilitate software development with optimal economic and social impact;
and specific recommendations made for WIPO regarding its possible future role in this field.

2. IPR REGIMES FOR SOFTWARE: COPYRIGHT, OPEN SOURCE AND

LIMITATIONS AND EXCEPTIONS

2.1. SOFTWARE COPYRIGHT

Software is covered by copyright law as a literary work2. Although software works are
unusual in that they may also covered by patent law, the scope of this study is limited to
software development practices with respect to copyright, the primary means of IPR
protection applied to software works.

2.1.1. Legal Background

Internationally copyright law has historically been governed by the Berne Convention, agreed
on since 1886, with various amendments up to 1979. The Berne Convention sets out a
number of rights that are granted to the creators of literary or artistic works. The rights
granted by the Convention include economic rights, specifically the right of the rights-holder
to exclusively authorize the reproduction of works. Independently of the author's economic
rights, and even after the transfer of the said rights, the Convention provides the author with
“moral rights” - the right to claim authorship of the work and to object to distortion or
mutilation of the work.

The Berne Convention did not specifically protect software authors, and the first legislative
protection of software was in 1980 when the US amended its copyright law to include
software3. In 1991 Council Directive 91/250/EEC made explicit the inclusion of software
under European copyright law. The World Trade Organization TRIPS agreement in 1994
included software (“Computer programs”) as subject matter to be protected as literary works,
in Article 10. And the WIPO World Copyright Treaty (WCT) detailed rights applicable to
software in 1996.

The legal framework for software copyright means, in summary, that a work of software
cannot be used, modified, copied or distributed without the explicit permission of the
software’s authors. Although there are some limitations and exceptions of copyright that
have been applied to software, in general, the legal framework means that the use of
software is governed by the terms of a license from the rights-holders that determine how
and whether the software can be accessed, used, modified, copied and distributed.

2.1.2. Policy initiatives

Public policy initiatives that aim to support economic and social development through the
application of copyright to software development practices can take a number of forms:
legislative actions affecting the scope and implementation of copyright; legislative and
regulatory actions taking advantage of exceptions and limitations in copyright regimes as

2
 In US law since 1980, followed by legislative changes around the world. See e.g. Mark A. Lemley, Peter S.

Menell, Robert P. Merges, Pamela Samuelson, Brian W. Carver. 2011. Software and Internet Law, Fourth
Edition. Aspen; Bridget Czarnota & Robert J. Hart, 1991. Legal protection of computer programs in
Europe: a guide to the EC directive. London: Butterworths

3
 Title 17, US Code, Sections 101 and 117

WIPO/CR/WK/GE/11/3
page 5

applied to software; and legislative, fiscal and other policy initiatives related only indirectly to
copyright law.

While portions of this study touch on the first two forms, the primary focus of this study is on
initiatives that work completely, in legal terms, within the standard copyright system. This is
because the past nearly three decades has seen the rapid growth of software development
practices that, originating in legal innovations in the application of copyright law, have
evolved to a major economic methodology with spillover effects in non-software domains,
cultural and societal practices. Free software, later also known as open source software, is a
software development and licensing model that has been the primary alternative to traditional
software development practices and a means of increasing software access through policy
initiatives. In the business community, as later sections of this study show, the success of
open source software has been large enough that it is part of the mainstream, and it calling it
an alternative model is a misnomer.

Although the software development and economic practices in open source may differ from
that used by proprietary software companies, when it comes to the legal aspect, open source
does not rely on any exceptions from copyright law, and fits completely within the traditional
copyright legislative framework. As this fact is key to the exploration of how public policy can
increase access to software – new legislative approaches to copyright are not required – this
Study provides below an explanation of how intellectual property rights and open source
software development relate.

2.2. MECHANICS OF RIGHTS PROTECTION.

Open source software developers have become among the most economically productive
online communities; however, there is sometimes a misconception that laws are ignored or
that the community’s efforts are “shared” as public domain and thus ignorant of IPR
concepts. In fact, open source communities are among the most formalized in cyberspace,
with the basis of their functioning guided by licenses under which their output is distributed,
based on copyright law as a foundation.

The interaction between open source communities and rights is a complex interaction
between the actors (developers and other community contributors), artefacts (code and
documentation) and legal frameworks as they determine the scope of intellectual property
rights.

To elaborate on this interaction, it is useful first to examine the way in which rights are treated
by the current legal framework for copyright. Normally, once a work is created, it is
exclusively appropriated by the creator, with a limited, temporary monopoly granted by the
state. This monopoly provides the creator with the sole right to control access to the work;
with copyright, the monopoly is over the reproduction of the work. It prevents follow-on
creation by others without the permission of the creator. This monopoly is meant to reward
the creator and provide an incentive for future creation.

With open source, this monopoly for the creator, providing rights to the created artefact, is
not used as an incentive to create. As seen below, incentive structures in open source
communities are more closely aligned to sharing of output rather than its appropriation. This
introduces several complexities in the interpretation of who the creator is, and how (and by
whom) rights are exercised.

WIPO/CR/WK/GE/11/3
page 6

2.3. RIGHTS CLAIMED BY OPEN SOURCE DEVELOPERS

It is essential to clarify that open source developers do claim and exercise rights over their
creations, even if this is done through unconventional uses of the legal framework. Open
source artefacts – software, documentation – are not public domain, in the legal sense of the
term4, though they may be public goods in the economic sense. Open source refers to
software to which the “Four Freedoms” adhere (Stallman5): users have the freedom to use,
freedom to study, freedom to modify and freedom to share this software.

While this includes works that are actually in the public domain6, by default, software authors
own their code. Under the Berne Convention, all copyrightable works are automatically
covered by the copyright of the original creator at the moment of creation. No registration or
notice – not even a copyright notice attached to the work – is required. Since software
authors own their code, they are free to sell it, or indeed to “give it away”. They must do this
explicitly, and can impose conditions, which may perpetuate the “Four Freedoms”.

Although the open source community has evolved its own implicit and explicit, informal rules
and norms, the legal foundation of the open source community structure is in copyright law.
Authors have the sole right to license their software to others, and software users must follow
license terms – otherwise they are infringing authors' copyright.

While software authors can safely “give it away”, this would literally be releasing software into
the public domain and disclaiming all future rights to it. This is rare (and not even possible in
some legal frameworks, e.g. in jurisdictions which provide for inalienable moral rights of the
author). Instead, licenses for open source follow two broad models: permissive and
reciprocal, and both involve the release to licensees of human-readable source code along in
addition to machine-readable object code.

2.4. MODELS OF OPEN SOURCE LICENSING

The permissive licensing model is fairly close to public domain. It allows licensees broad
rights to use, study, modify, distribute the software with few if any conditions. Most
conditions relate to disclaimer of warranty issues. Examples of such licenses include the
Berkeley BSD license, under which the popular operating system FreeBSD and its relations
are distributed; the Apache license used for the market leader in web server software,
Apache; and the MIT license used for the X Window system of graphical user interfaces
under Unix-like operating systems. As the names of some these licenses indicate, they
originated in universities and are often referred to as academic licenses.

The other licensing model, accounting for a majority of open source projects is reciprocal.
‘Reciprocal’ is used here to convey the notion that rights are being granted by the software
authors, but in return (i.e., reciprocally), the recipients of the software must also grant similar
rights if they redistribute the software. Quite different from the public domain, this model
forms a “protected commons”. Licensees have broad rights to use and study the software. If

4
 With no claim of (copy)right, works in the public domain can be used in any way by any one; see Samuels,

Edward, 1993. “The Public Domain In Copyright Law by Edward Samuels”, Journal of the Copyright
Society 41:137.

5
 Stallman, Richard. “The Free Software Definition”. Available at http://www.gnu.org/philosophy/free-

sw.html. The definitive list of open source software licenses is maintained by the Open Source Initiative,
following the Open Source Definition, see http://www.opensource.org "

6
 E.g. software created by employees of the US Federal Government, which uniquely under US law is, like

other intellectual works created by US Federal Government employees, in the public domain.

WIPO/CR/WK/GE/11/3
page 7

they distribute the software, they must provide recipients access to the source code
(providing them the freedom to study). They must also provide recipients with the software
under the same terms, allowing recipients the freedoms to further use, modify or distribute it.
Licensees can only modify the software if the modified software is also distributed under the
same terms. All recipients of such a derived work can, according to the original license,
further modify it. This ensures reciprocity by forming a “protected commons” – authors are
contributing their software into a commons with certain freedoms attached, and any further
modifications must be made available with the same freedoms provided. This principle of
reciprocal licensing can be described in lay terms as: “I am giving you certain rights over my
software, and if you distribute this software, you must ensure that recipients receive the same
rights from you as you did from me”.

The best known reciprocal license is also the most widely used open source license,
accounting for over 66% of open source software projects (Freshmeat 20057), the GNU
General Public License (GPL), with a further 6% distributed under the closely related Lesser
GPL. The GPL is the license used by the Linux kernel and several other large software
packages. Other widely used reciprocal licenses include the Mozilla Public license8, used for
the popular web browser Firefox; the Lesser GPL9, used by Open Office, the main
competitor to the Microsoft Office productivity suite; the European Union Public Licence
created by the European Commission for the release as open source of publicly funded
software10.

2.5. CONDITIONS AND “RECIPROCITY”

Note that this “protected commons” created by reciprocal licenses is not formalized, and
there is no obligation that licensees who modify software to make derived works “give back to
the commons” in a formal sense, i.e. modified software does not need to be given away at no
cost; nor does source code need to be published or provided to the original author. Indeed,
such requirements would disqualify a license from being a free software (or open source)
license. Reciprocal licenses such as the GPL require that recipients of software have the
four freedoms; they do not require that the public at large have these freedoms.

The GPL, for instance, allows an author of a derived work to sell the work for 5 000 Euro a
copy in only binary form (machine readable object code). However, all those who buy this
software must, according to the GPL, be given the four freedoms. In particular, they must
have the right to study the code, which is why the GPL requires that recipients of object code
– in this example, the buyers – be provided with the source code at no significant extra
charge. Similarly, the recipients have the right to modify and distribute the code with no
further conditions; since they may distribute the code they received at no charge, if they so
wish, or sell it for a lower price than they paid for it, charging high prices for the code alone,
while allowed by open source licenses, is unsustainable under normal market conditions.

The reciprocal conditions imposed by open source licenses such as the GPL are unusual,
though they have since been widely reproduced (including in Creative Commons licenses for
non-software works such as art and text). Several commentators have raised questions as
to the validity of the GPL’s reciprocity requirements, going so far as to claim that reciprocal

7
 http://freshmeat.net/stats/#license - 66% when accessed on July 17, 2006

8
 http://www.mozilla.org/MPL/MPL-1.1.html

9
 http://www.gnu.org/licenses/lgpl.html

10
 http://www.osor.eu/eupl

WIPO/CR/WK/GE/11/3
page 8

conditions expropriate the intellectual property rights of the authors of derivative works11.
However, a derivative work is a work built upon an original work, such as a modified version
or extension of an original work of software. Authors of derivative works have no particular
right to create them in the first place. Copyright law prevents anyone from modifying or
distributing software without the explicit permission of the copyright holder – permission
granted usually through a license. The copyright holder, choosing to grant the permission to
modify, is free to set any conditions on the license.

For example, an open source license gives a person permission to sell copies of the
licensor’s software, which would be forbidden (without permission) under copyright law. It
may place conditions on this permission. But a open source license normally cannot place
conditions on your ability to copy parts of software, make a personal backup copy, or other
activities allowed by copyright law under “fair use” or equivalent12 terms.

Without following licensing conditions, users who distribute a work or make derived works are
making unauthorized copies, thus infringing copyright. Indeed, in a rare court case
concerning the distribution of modified versions of netfilter/iptables, a tool in Linux, a German
appeals court ruled that even though the GPL itself may not entirely be valid in German
contract law, it was the only thing that granted permission to the accused to distribute the
software. Thus, the terms had to be obeyed, otherwise it was a simple case of copyright
infringement.13 Several incidences of violations of open source licensing terms have since
been identified, mostly settled out of court14.

2.6. RECIPROCITY AND COLLABORATION

Creators of a number of open source projects, with the aim of maximizing use, have chosen
permissive rather than reciprocal licenses. Some of the early choices have been without
much discussion, almost by default. The prototypical permissive license is the BSD license15,
used for the various versions of BSD Unix (the “Berkeley Software Distribution”16). This
enormously influential systems software suite has, in great part due to its license, provided
the underlying operating system for all Apple Macintosh computers since 2002 (and is the
core of Apple's iOS mobile operating system, meaning that the iPhone and iPad run on open
source software). Originally copyright of the Regents of the University of California, the BSD
license was typical of the “academic” publication ethic.

Similarly brief and permissive (and academic in origin), the MIT License17 or X license
originated to distribute the X Window System18, the graphical user interface (GUI) for Unix

11

 “This viral aspect of the GPL poses a threat to the intellectual property of any organization making use of
it”, in Mundie, Craig. 2001. “Speech Transcript - Craig Mundie, The New York University Stern School of
Business”, May 3, Available at http://www.microsoft.com/presspass/exec/craig/05-03sharedsource.mspx;
See also Evans, David S. and Reddy, Bernard J., 2003. “Government Preferences for Promoting Open-
Source Software: A Solution in Search of a Problem”, 9 Mich. Telecomm. Tech. L. Rev. 313. Available
online at http://www.mttlr.org/volnine/evans.pdf; see also Jonathan Schwartz, CEO of Sun Microsystems,
quoted in Profitt, Brian. 2005. “Editor's Note: With Friends Like These...”, Linux Today, April 8, available
online at http://www.linuxtoday.com/it_management/2005040802526OPBZ

12
 E.g. in many European countries, the right to make a “private copy”

13
 District Court of Munich I, Judgement of 19/05/2004 – file reference: 21 0 6123/04; English translation

available at http://www.oii.ox.ac.uk/resources/feedback/OIIFB_GPL2_20040903.pdf
14

 See http://gpl-violations.org
15

 http://www.freebsd.org/copyright/freebsd-license.html - permissive licenses are often called “BSD-like”
16

 Much information and history is available on Wikipedia:
http://en.wikipedia.org/wiki/Berkeley_Software_Distribution

17
 http://www.opensource.org/licenses/mit-license.php

18
 http://en.wikipedia.org/wiki/X_Window_System

WIPO/CR/WK/GE/11/3
page 9

that originated in 1984 at MIT and is now the basis for most GUIs running on versions of
Unix, Linux and BSD.

Both these licenses were implemented before the first version of the GPL, thus before the
notion of reciprocal licensing became widely known. The GPL’s legal innovation was truly
remarkable, and the most significant permissive license that followed was probably the
Apache license in 199519. This was written for the Apache web server, an open source
application written not by academics but by Internet professionals and website
administrators. The GPL was already the dominant open source license and the discussion
among the Apache developers, about whether or not to require reciprocity, is something
many subsequent projects have faced, with varying degrees of argument. Apache chose to
maximize its user base, and to encourage contributions to the commons through gentle
social pressure20 rather than legally binding restrictions. Indeed, Apache’s user base was
maximized – it became the most used web server within a year of its release, and has held a
steady two-thirds of the total web server market since 2000.

Some of the scripting languages and content management systems - tools used (among
other things) to make websites interactive – have also used permissive licenses. But the
Linux kernel and the majority of open source software use reciprocal licenses. One reason is
that reciprocal licenses are drafted to enforce reciprocity through “recursion” – typically, a
derived work must be distributed under the same license. Thus, new software that reuses
old GPL software – code reuse being one of the hallmarks of the open source software
development model – must be licensed as GPL. For those not strongly opposed to
reciprocal licensing, choosing the GPL is a fair trade for getting access to an ever huger
codebase to reuse. Thus each reciprocal license is automatically designed to be dominant,
and the most popular, or oldest, will by default dominate the entire license space.

However, one cannot say that most developers are against reciprocal licensing, or even
neutral towards it. For rational actors, reciprocal licenses may be a better choice than a
permissive license. Certainly, one feature of “giving your work away” that is hard to justify by
a shortsighted rational actor is the threat of competitors benefiting from what you give away,
or more generally, the threat of free-riding. This occurs less with reciprocal licenses, since
competitors can benefit, but they cannot exclusively appropriate the benefits. They can
“share”, but not “steal”. If they adapt or improve the work, they must in general return it to the
commons, allowing the original creator to benefit from the improvements. Reciprocity
ensures that development remains collaborative, and cannot be exclusively appropriated.
The reciprocal licensing model allows the Linux operating system, for example, to have
several thousand individual copyright holders, for each separate contribution made –
something that would be quite impractical if individual licensing agreements had to be made.
This is an example of how open source licensing lowers transaction costs for collaboration.

2.7. RECIPROCITY AND INCENTIVES

Reciprocity provides incentive for new contributors, including firms. 60% of developers
think21 the role of a license is “To prevent others from appropriating the software we've

19

 The current version is 2.0, written in 2004 and available at http://www.apache.org/licenses/LICENSE-2.0
20

 See e.g. Apache Software Foundation, 2006. “Frequent Questions about Apache Licensing”. Available at
http://www.apache.org/foundation/license-FAQ.html

21
 out of 1540 respondents: http://www.stanford.edu/group/open source-us/stats/q7.html

WIPO/CR/WK/GE/11/3
page 10

created” (open source-US survey22), thus showing that they are not altogether (if at all)
altruist and may frequently be choosing reciprocal licenses with the selfish motive of ensuring
their access to future improvements.

The preference among developers for reciprocity is not limited to independent individuals.
According to a survey of Italian firms that release open source software, firms prefer to use
the GPL because “it allows to keep the code open and forbids competitors to turn it into
proprietary.” (Bonaccorsi & Rossi 200323).

This has even been a concern for the public sector. For example, in a study conducted to
examine the possibility of the European Commission releasing a software application it owns
under an open source license, a key condition was that “the Commission requires protection
against appropriation of application by third parties” (Dusollier, Laurent and Schmitz 200424).
The recommendation, based on this requirement, was to use a license with a reciprocity
clause, i.e. a copyleft license such as the GPL.

2.8. RECIPROCITY AS A FRAMEWORK FOR DISCLOSURE

Patents, which are justified on the basis of promoting disclosure (and therefore follow-on
innovation), are not really succeeding at that task, according to a number of surveys of
innovators.

Arora et al (2003)25 find that “patent disclosures appeared to have no measurable impact on
information flows from other firms, and therefore no measurable effect on R&D productivity”.
Arundel (2001)26 finds that “a consistent result in survey research on the use of patent
databases is that they are among the least important external information sources available
to firms”. His analysis of 12445 firms’ responses to the CIS survey results27 shows that
between 5% and 18% of small and medium-sized firms find patents to be a useful source of
information28.

In the case of software, surveys show (Arundel et al 200629) that more firms think free
software source code is an important source of new ideas (17%) than patent databases
(5%). The opinion of individual innovators (engineers) is perhaps more relevant as

22

 David, Paul, Waterman, Andrew and Arora, Seema, 2003. “FLOSS-US: The Free/Libre/Open Source
Software Survey for 2003”. SIEPR/KNIIP Working Paper, available at http://www.stanford.edu/group/open
source-us/report/open source-US-Report.pdf

23
 Bonaccorsi, A. and C. Rossi (2003). “Licensing Schemes in the Production and Distribution of Open

Source Software: An Empirical Investigation”. MIT Open Source working paper series. Available online at
http://opensource.mit.edu/papers/bnaccorsirossilicense.pdf

24
 Dusollier, S., Laurent, P., and Schmitz, P-E. 2004. Open Source Licensing of software developed by The

European Commission (applied to the CIRCA solution). European Commission DG ENTR. Available online
at http://europa.eu.int/idabc/servlets/Doc?id=19296

25
 Arora, A. et al., 2003. “R&D and the patent premium”, Nat’l Bureau of Econ. Research, Working Paper No.

9431. p17. Available at http://www.nber.org/papers/w9431
26

 Arundel, Anthony. “Patents in the Knowledge-Based Economy”, Beleidstudies Technologie Economie 67;
27

 Arundel A. (2000), "Patent – the Viagra of Innovation Policy?", Internal Report to the Expert Group in the
Project "Innovation Policy in a Knowledge-Based Economy", Maastricht, MERIT. Figure 4, page 15.
Available online at
http://www.ebusinessforum.gr/index.php?op=modload&modname=Downloads&pageid=320

28
 the share is 34% for large firms, but even they find patents less useful than other sources of information,

such as customers, suppliers, conferences and journals, trade fairs, and competitors.
29

 Arundel, A., Bergstra, J., Feijoo, C., Ghosh, R.A., Glott, R., Hall, B., Klint, P., Martin, A., Thoma, G., and
Torrisi, S. 2006. “Empirical Study of economic impact: Approach and preliminary findings”. European
Commission, part of the “Study of the effects of allowing patent claims for computer-implemented
inventions”, available online at http://www.merit.unu.edu/patentclaims/

WIPO/CR/WK/GE/11/3
page 11

questionnaires on patents sent to firms are likely to be answered by the legal department
than by innovators. Far more innovators within firms30 think software source code (41%) or
journal publications (68%) are moderately or very important sources of new ideas, than
patents (24%).

While we do not know how much of this software source code that is source of new ideas is
licensed under reciprocal terms, these data show that open source software is succeeding in
providing disclosure, while patents are less successful. This is certainly at least in part due
to reciprocal licensing, which provides a legal requirement to disclose (much as patents are
supposed to do). Without reciprocal licensing, disclosure would be only due to social,
economic or other incentives, but not a requirement, and would presumably be reduced31.

If a legal framework is required to promote disclosure and follow-on innovation, there is,
therefore, some evidence to justify an argument that reciprocal open source licensing
provides a more effective framework than the current patent regime. At any rate, open
source licensing has come to form an innovative layer above copyright law to further access
to software as well as facilitate wider participation in the process of software development
itself.

3. OPEN SOURCE STRATEGIES FOR LOCAL DEVELOPMENT: ECONOMIC
ASPECTS, INCENTIVES, COSTS AND BENEFITS

“Access [to ICTs] is not enough, it is the ability to create, to add value, that is important”
Felipe Gonzalez, former Spanish Prime Minister32

What former Spanish Prime Minister Felipe Gonzalez referred to as the ability to create and
add value is particularly important for developing countries and other economically
disadvantaged communities. Access alone limits them to the role of passive consumers in
the knowledge economy; the ability to create transforms them into active participants. By
lowering barriers to the transfer of knowledge, reducing transaction costs and enabling a
protected commons, open source arrangements for software development has been shown
to provide a training environment that enables this ability to create; it increases the earning
capacity of community participants without any explicit investment in training and is perhaps
a novel form of technology transfer.

The common feature described in the literature33 for various examples of collaborative
innovation shows that the most important enabling feature is access. Access is not required
to knowledge alone, but to the tools and (legal) ability to replicate and improve upon
knowledge. Thus it is not access to knowledge as passive consumers, which is often
discussed and fitted well with the old model of R&D where producers were distinct from

30

 Arundel et al 2006 (supra note) shows consolidated data for all respondents; figures included here are for
individual innovators employed at private companies, i.e. excluding those employed at public organizations
or research institutes.

31
 Several firms embrace disclosure for other incentives, e.g. when they contribute to Apache software which

has no reciprocity requirements. However, several firms try to evade the disclosure requirements of
reciprocal licenses such as the GPL, when the GPL’s legal requirement to disclose provides a useful
mechanism. The court case referred to in supra note is one example, and the GPL Violations Project
(http://gpl-violations.org/) contains many others.

32
 Gonzalez. Speaking at Open Source World Conference in Málaga, Spain, 18/2/2004. From author's notes.

33
 e.g. Benkler, Yochai, 2006. The Wealth of Networks: How Social Production Transforms Markets and

Freedom. Yale Press; Ghosh, Rishab Aiyer (ed.), 2005. Code: Collaborative Ownership and the Digital
Economy. MIT Press; Ghosh, Rishab and Soete, Luc. 2006. “Information and Intellectual Property: The
Global Challenges”. Industrial and Corporate Change, Vol. 15, No. 6, pp. 919-935

WIPO/CR/WK/GE/11/3
page 12

consumers. In this model, developing countries are often treated as consumers who do not
have the ability to innovate, perhaps due to the lack of technical skills, and must therefore
passively consume products of developed countries (with subsidies, if required) or if they are
more industrially advanced they may imitate production methods developed elsewhere.
Apart from being patronising, this view does not fit with the new mode of technological
progress for development, for two reasons.

First, empirical research has shown (Ghosh and Glott, 2005) that in the case of software,
open collaboration provided by access to modifiable technology may not be problematic due
to a lack of skills; rather, it leads to the development of technical, business and legal skills.
Such skills are often better than those learnt in formal courses and proven participation in
open source development may compensate for the lack of formal degrees. These results
were supported by employers surveyed. This shows that while access to knowledge may
build skills through passive absorption (e.g. through textbooks), access to technology in a
form that can be shared and modified without entry barriers (as with open source software)
can build advanced skills, compensate for the absence of formal training and generate
increased employment.

Second, the premise of the new mode of technology development is that lowering entry
barriers for the modification of technology reduces search costs, allowing participants in the
market of producer-consumers to more efficiently allocating skills and other resources to
needs for improvement. This leads to more efficient and perhaps faster technical innovation,
with the entrepreneurial risks of innovation spread widely. Thus, providing access to
technology need not be seen as charity or aid for developing countries, but as enlarging the
resource base of potential innovators.

While access to knowledge as a passive process is politically framed within the language of
development aid, access to technology as a way of providing the right and ability of
participation is analogous to the arguments favouring free trade: developing countries can
then be seen as providing a resource of potential innovators, rather than merely using
existing innovations from the developed world.

This leads to the question of whether public policy should favour passive use of “black-box”
software or active participants in the global ICT community. Being active requires being able
to create – and choose with the least barriers the level of creativity. Clearly, the lower the
entry barrier for creativity, the higher the potential that creativity that will occur. Developing
countries need to avoid being locked out of skills and competencies. Skills development
requires access to the ability to create, not only the access to software itself but to the
process of software development, which as the following summary shows, is provided by the
open source development model founded on the use of copyright licensing.

3.1. SKILLS DEVELOPMENT: INFORMAL APPRENTICESHIPS BENEFITTING

EMPLOYERS

Open source, or free software as it was originally called, has become in recent years one of
the most talked about phenomena in the information technology world. This is remarkable,
not only for the usual reasons that open source has been around for many years as a
volunteer driven success story before being discovered by big business and government —
but also because it has largely developed quietly on its own without the headline coverage
and glare of international attention that it now receives.

This in turn makes it more attractive to governments and policy makers. Countries around
the world, regardless of wealth, are trying to bring citizens into the Information Society and

WIPO/CR/WK/GE/11/3
page 13

provide electronic access to government services. Many of them are considering open
source software as a cost-effective means of doing so. Many more see an inherent injustice
in requiring citizens and businesses to buy software from specific vendors in order to
communicate with the government, and are looking at open standards – which allow different
products from different producers, whether open source or proprietary software, to work
together.

What is the special economic and social value of open source software, and how can it be
harnessed? The Free/Libre/Open Source Software (FLOSS) study in 200234, a
comprehensive study of several thousand developers and users worldwide, first showed that
the most important reason for developers to participate in open source communities was to
learn new skills — "for free". These skills are valuable, help developers get jobs and can
help create and sustain small businesses. The skills referred to here are not those required
to use open source software, but those learnt from participation in open source software
communities. Such skills include programming, but also skills rarely taught in formal
computer science courses, such as the basics of copyright law and licenses (a major topic of
discussion in many open source software projects). Teamwork and team management are
also learnt – after all, the team management is required to coordinate the smooth
collaboration of 1500-plus people who rarely see each other can be more intensive and
subtler than what is required to coordinate smaller teams employed in a single software
company.

A large-scale follow-up study in 2005 for the European Commission under the FLOSSPOLS
project found that developers as well as employers find that skills learnt by participation in the
open source software community are so valuable that they may compensate for the lack of a
formal degree. Large surveys for the European Commission under the FLOSSWorld and
FLOSS include research projects in 2007-2010 – the first large surveys on FLOSS, with
thousands of respondents, conducted across developing countries and LDCs in Africa, Asia,
and Latin America – found similar results regarding the economic value of open source
software for the development of local skills of use to employers.

Open source communities are like informal apprenticeships – but the apprentice/students
and master/teachers contribute their own time “for free”, without any monetary compensation
for the training process. Everyone can benefit equally from this training – any employer can
hire someone informally “trained” through participation in the open source software developer
community. However, not everyone invests equally in it. As many “teachers” may have
been formally trained at university or at work, which is explicitly paid for, explicit costs are
being borne for some proportion of community participants who have been formally trained.

In the larger perspective, this training system where all parts of society benefit from the
products of the system, but only some explicitly pay for it, represents a subsidy – or
technology transfer – from those who pay for formal training to those who do not (or cannot).
Within countries, this represents a technology transfer from big companies who often formally
pay for training to small and medium-sized enterprises (SMEs), who can less afford formal
training expenses. Globally, this represents a technology transfer from the usually richer
economies who can afford formal training, to the usually poorer ones who cannot.

34

 Ghosh R., Glott R., Krieger B., Robles G. (2002). Free/Libre and Open Source
Software: Survey and Study, FLOSS, Final Report. European Commission / International Institute of
Infonomics, University of Maastricht. See Survey of Developers. Available online at:
http://www.flossproject.org/report/index.htm

WIPO/CR/WK/GE/11/3
page 14

3.2. BUILDING LOCAL ICT COMPETENCIES

Local skills development extends to the creation of new, local businesses, which are able to
provide commercial support for and build upon open source software thanks to its low entry
barriers, in a way that would not be possible with proprietary software where standard
copyright licenses prevent transaction-free access by third parties. This effect is heightened
by any public support of the open source software sector.

Facilitating local software development is especially important given the natural tendency of
traditional global proprietary software vendors to ignore local needs especially in developing
regions. As proprietary vendors are motivated by global profit-maximization strategies, local
issues and user needs take a lower priority. So, for instance, a large multinational software
company may not be interested in supporting Xhosa speakers in southern Africa. And since
their software is proprietary, no local user or local business is in a position to add such
support. Open source developers in Europe or North America may similarly be uninterested
or unwilling to develop support for Xhosa speakers. However, making software available
under open source licenses allows developers in southern Africa to learn from and adapt it to
support Xhosa. As the description of this case later in this study shows, local development of
software for local communities can then result in localization infrastructure that, while built in
Africa, is later exported and reproduced in other parts of the world.

Such local adaptation supports the creation of new, local businesses, which are able to
provide commercial support for and build upon open source software thanks to its low entry
barriers, in a way that would not be possible with proprietary software. This effect is
heightened by any public support of the open source software sector. For example, the take-
up by the Extremadura Region in Spain of open source through its support for the LinEx
project has led to an economic regeneration in a relatively poor region of the European Union
(receiving, in April 2004, the award of the European Regional Innovation Award). This has
not just allowed the implementation of activities for a lower price, but activities especially in
education and training which were simply not possible with proprietary software; it has also
led to the growth of a number of small businesses to provide commercial support, since with
open source software there is no need for customers to approach one sole vendor for
support — approaching local entrepreneurs is possible and an obvious choice.

For SMEs who do not already have extensive ICT use – and this applies to significant
sectors and regions of the economy – evidence from MERIT’s initial study of the impact on
local firms of the ICT/open source policies of the regional government of Extremadura35,
Spain is instructive. There is a clear indication that while open source use may not in itself
drive economic growth, the availability of open source drives ICT (not always open source)
take-up among SMEs. A significant connection between ICT performance in firms and the
role of open source was found. There was strong evidence that effective ICT performance
together with the role of open source is what counts in terms of improving firm performance:
above average performing firms with respect to ICT performance and open source support
exhibit above average scores with regard to market share, cash flow and return on
investment.

This performance seems driven by the importance given to innovation, and a close
relationship was found between ICT use together with open source use and educated
employees, and the degree of innovation. Thus, besides ICT importance in general (which is
the most important indicator when compared to other firms with a lower ICT use), open

35

 Dunnewijk, Theo and Garcia, Abraham, 2005. The economic impact of ICT policies in Extremadura.
FUNDECYT/Junta de Extremadura, Badajoz, Spain

WIPO/CR/WK/GE/11/3
page 15

source support seems to be part of the explanation for the actual ICT performance together
with the level of education of the employees. The conclusion was that ICT performance
matters and open source support and the level of educational attainment are equally
important for its performance. In particular, a number of local small businesses have arisen
to support and develop open source applications, sell hardware based on open source (in
particular, Extremadura’s version of Linux called gnu/LinEx). Some of these also develop
new software, such as FacturLinex, a open source invoicing and billing system developed by
a local micro-enterprise and used in many shops in Extremadura and increasingly elsewhere
in Spain. In interviews with MERIT, small business customers in Extremadura have
expressed a preference for using software which a small firm has developed (or helped to
develop) as they feel they will get better support and personalised attention, whereas a large
firm with a proprietary product may not be willing or able to attend to their specific needs. It
should be noted that the Extremadura model has already been duplicated in other regions,
especially in Spain, such as the much larger Andalucia, where about 400 000 desktops are
running a localised version of the open source operating system GNU/Linux, which is also
the standard platform – as with Extremadura – for libraries and digital inclusion centres. As
pioneered by Extremadura, which used regional policy in support of open source to
encourage local SMEs to provide IT services, Andalucia is also developing a regional policy
to induce economic development through SME firms retaining a higher share of value added
locally.

Of course, proprietary software also supports local businesses (excluding businesses who
are users, who exist regardless of the type of software). What are the types of businesses
that can be based upon proprietary software? Building new products and services above the
platform is one, equally applicable to open source software – 100% of this value is local.
Sales commissions are another, rarely possible with open source software, and of relatively
low value. While 100% of the commissions may be locally retained, they represent a small
proportion of the total value added, and every dollar of sales commission represents several
dollars of imports. Finally, support, integration and customisation – this is where with
proprietary software the local value added is limited by the proprietor’s control of the
software. Deep, high-value support requires deep, high-value access to the software, which
only the proprietor has.

With open source software, the “deep support” that can be provided by “deep access” to the
code available to all local businesses can generate enormous value, all of which is retained
locally. No royalties or licences fees have to be paid.

Even for local businesses producing their own software, rather than only supporting other
software, open source software is often a better value proposition: the licensing model
allows providers to reuse software built by others without additional licensing or payment
rather than build from scratch. The low transaction barriers means there it is possible to
reuse a huge base of software written by others. Re-using (and modifying) allows the
creation of much better end-user solutions for the same effort as compared to than creating
completely new software, which local businesses are typically forced to do if they choose to
develop software for sale under the proprietary software model. Put together, this provides
better value for money for customers (who benefit from software representing a large base of
cumulative development) and better profit margins for local service providers (who can focus
on adding new features faster rather than replicating basic ones, allowing them to charge
more for less work). Thus, access to software as well as participation to software creation is
increased.

It must be emphasised here that increased open source software use can allow regional
economies, and SMEs in particular, to locally retain a higher share of the added value. It is

WIPO/CR/WK/GE/11/3
page 16

clear that sales commissions related to proprietary software may lead to a higher absolute
value retained locally, if proprietary software is much more widely used than open source
software. A high added value in a small market can be less than valuable locally than low
added value of a large market. Indeed, this makes open source potentially rather attractive,
as it currently provides lower absolute added value locally than proprietary software, but
provides a higher share of added value retained locally. This is because the market is
currently dominated by proprietary software. Our analysis above suggests that if the share of
open source software was increased relative to proprietary software – whether by market-
driven demand, or by regional policies as described in this study – since the share of all
value added that was retained locally would rise, the total value retained locally would also
rise significantly. In any case, when a high share of proprietary software leads to a high
absolute value added retained locally in the form of, say, sales commissions, this only
indicates the even higher absolute value that is not retained by local firms.

4. LEGISLATIVE FINDINGS AND POLICY OPTIONS

4.1. LEGISLATIVE AND POLICY MEASURES TO SUPPORT WIDER ACCESS TO
SOFTWARE

Unlike for some other creative works, initiatives to improve access to software do not seem to
take advantages of any exceptions or limitations to rights. Although IPR laws for software
could, in principle, be written to provide exceptions or limitations, those that are in place
seem to serve specific, technical purposes: specifically, the limitation on copyright that
allows for reverse engineering for the purposes of interoperability, in US case law and the EU
Software Directive. There have been discussions in policy circles of using TRIPS Article 40
exceptions for software, but again this has been for the technical purpose of ensuring
interoperability, and not increasing access to software.

In some situations, software copyright simply has not applied. E.g. in least developed
countries temporarily exempt under TRIPS from enforcing software copyright, such as
Cambodia (see case study), or jurisdictions with limited recognition or facing trade
embargoes, such as Northern Cyprus – where proprietary software from US vendors simply
cannot be sold, so in practice it must be widely copied ignoring copyright36. However, even in
such situations, users, developers, industry, donors and policy makers have tended towards
looking at open source software licensing as a forward-looking solution to providing and
increasing access software. (In Cambodia, as the case study shows, it was to develop local-
language software solutions for the first time; in Northern Cyprus, donor agencies including
the European Commission and UNDP supported migration to open source software as a
legitimate low-cost alternative to unauthorized copying of proprietary software for which
copyright would be enforced after eventual unification.)

Policy initiatives examined here, therefore, exclusively relate to open source software as a
means to increase access. Such initiatives can be classified as follows37:

36

 A further, more esoteric case is when software is created by USA Federal Government employees; under
US law, there is no IPR on such software, which is automatically in the public domain. There is one well-
known case of software that was created in such a way: VistA, the health management software for the
US Veterans Administration. It has since been further developed by foundations and the private sector, and
a copyrighted version is distributed under an open source license (OpenVista).

37 This classification draws on: Wong, Kenneth. 2004. UNDP-APDIP: FOSS Government Policy. Elsevier.

Available online at http://www.iosn.net/government/foss-government-primer/foss-govt-policy.pdf

WIPO/CR/WK/GE/11/3
page 17

• Mandating Free/Libre/Open Source Software (FLOSS) 38: government requires the
use of FLOSS for all or specific types of software

• Preferring FLOSS: government prefers the use of FLOSS for all or specific types of
software

• Mandating Open Standards: this often has the effect of preferring FLOSS
• FLOSS Competency Centres: supporting initiatives that provide expertise and

support for public authorities and others with questions about FLOSS
• A common strategy of many FLOSS policies is the creation of a FLOSS

competency/research/compatibility
• Awareness raising: the most widely recommended and successful strategy as shown

from a number of empirical surveys, simply raising awareness of FLOSS has the
tendency to increase its use and development; such awareness raising is typically in
the form of promoting or aggregating news, conducting case studies of best practices,
etc. See the OSOR case study.

• Credit/Financial Assistance

A number of countries have had some success in implementing some or several of these
policies and initiatives. The Brazilian Government has managed to foster the development of
open source software in all areas of its ecosystem – education, public administration, health,
industry In Latin America, Brazil stands out from the rest of the countries in the region due to
the greater extent to which it has adopted and developed FLOSS, with levels comparable to
countries such as India and China, due to the publication of regulations, mass migrations in
public sector agencies and companies, FLOSS product development (goods and services) at
the public universities and the creation of a collaborative portal for Community players. The
European Union and certain EU member states have also taken several policy initiatives (see
the OSOR case study) and are helped by having the largest number of individual open
source software developers world-wide.

Countries with a higher level of FLOSS development and adoption, such as the United States
(where however, the private sector leads by far in FLOSS initiatives), Australia, Germany,
France, Spain, each demonstrate high levels of development in all parts of the ecosystem.
The open source software development model is a globalizing model in which players use
the Internet to take part in projects in a cooperative environment, regardless of the nationality
of the player or the project, and there are rarely differences between geographical areas,
either in terms of the workings of the communities or the associated business models. When
initiatives do take off, therefore, they quickly lead to global links – see the KhmerOS
Cambodia and Sahana Sri Lanka case studies.

The Center for Strategic and International Studies has, for the past few years, compiled a list
of public initiatives taken by national, regional and local authorities worldwide39. A
quantitative summary from the 2010 list is provided below.

Table: Regional distribution of Open Source Initiatives

Approved initiatives Region

R&D Advisory Preference Mandatory

Proposed
initiatives

Failed
initiatives

38

. Free/Libre/Open Source Software is generally referred to in this document by the acronym FLOSS, a term
used in a number of studies and policy documents in Europe, Africa and Latin America.

39
 Lewis, James A. 2010. Government Open Source Policies. http://csis.org/publication/government-open-

source-policies

WIPO/CR/WK/GE/11/3
page 18

Europe 45 37 36 8 27 10

Asia 19 16 22 2 20 2

Latin
America

8 6 12 31 15 11

North
America

5 8 2 1 11 10

Africa 3 1 4 8 1 0

Middle East 1 2 2 0 2 0

Note: R&D initiatives are non-policy initiatives supported by public authorities or legislatures.
Other initiatives are policy initiatives, relating to development, software procurement
regulation, or release of publicly funded software under open source licenses.

4.2. FISCAL MEASURES

FLOSS software development may not be a charitable activity, although a majority of
contributors remain independent individual volunteers40. However, when the software is
released to the public, it is a charitable donation and treating it as such for tax purposes may
be a simple and effective support mechanism. It should be noted that IPR donations are
commonly used for tax deductions by firms especially in high technology sectors in the US.
There has been considerable controversy resulting in a general investigation by the US
Internal Revenue Service on the somewhat arbitrary valuations placed by firms on such
donations, particularly on donations of patents to universities41.

However, with FLOSS software, a simple lower bound valuation could be the time spent on
development. While there are means of evaluating this based on the size of the
codebase[2], which could be used as a control on time claims, these “donations” could also
be valued on the basis of actual time spent as documented by timesheets.

It should be noted that the logic of equitable treatment for in-kind donations of FLOSS applies
also to other non-software goods that are donated under such “information commons”
schemes, such as music, text, scientific and other creative works distributed under (several,
but not all) Creative Commons licences. A control for valuation may be somewhat more
difficult for other artefacts where, unlike for software, substitution cost estimation metrics do
not exist – but auditable time input at the opportunity cost of the donor’s time can always
provide a lower bound for the value of the donation.

It should be noted that there is no specific policy in place in member states for tax treatment
of open source contributions that the author is aware of. The proposal above was included in
a report published by the European Commission (2007) which noted in detail how it was
consistent at least with US tax law.

5. SUPPORTING SOFTWARE DEVELOPMENT: SUMMARIZED CASE STUDIES

40

 See Figure 28, “Distribution of code output by individuals, firms, universities”, in European Commission
2007.
41

 See e.g. Feder, Barnaby J., 2002. “Patent Donations Are Novel Corporate Gift”, New York Times, November 17
(Finance News). Available at http://www.nytimes.com/ref/open/finance/17PATE-OPEN.html

WIPO/CR/WK/GE/11/3
page 19

Previous sections have examined economic aspects and survey data relating to open source
software and economic development, and legislative and policy initiatives. In this section, a
few cases of specific initiatives have been examined in more detail. They show how open
source models for copyright have allowed public initiatives to rapidly develop access and
deploy software systems with significant impact. Initiatives examined have sometimes been
originated by government, but are often originated by civil society or industry and later
supported by public organizations – underscoring the flexibility of open source licensing,
which allows users and developers to bypass the transaction costs and times typical of
traditional copyright exploitation models. The initiatives examined here have been selected
specifically for highlighting the role of local software development, and exportability to other
regions (see the table below).

Thus, the following case studies are presented here.

1. Sahana: the award-winning disaster management system created in Sri Lanka as a
response to the 2004 tsunami. Deployed in Sri Lanka by the government's Center of
National Operations (CNO), it was later supported by a number of public and private
agencies and deployed with further development around the world, including in
Indonesia during the 2006 earthquake, Peru in the 2007 earthquake, and Haiti during
the 2010 earthquake.

2. Ushahidi: a crisis mapping, data collection and visualization system created in Kenya

in the violent aftermath of the disputed 2007 presidential election, the Ushahidi
system has been used to monitor elections in Mexico and India, deployed shortly after
the 2010 earthquake in Haiti, used to monitor the effects of the 2011 earthquakes in
Christchurch, New Zealand, and Japan.

3. KhmerOS: a software localization effort in Cambodia that built upon the South

African translate.org.za multi-lingual localization system, and was then “exported” to
Bangladesh

4. IT@Schools Kerala: an initiative of the regional government of Kerala, India, to use

open source software in all state schools, that is similar to a number of initiatives
elsewhere in the world

5. Open Source Observatory and Repository: a European Union project, providing a

development environment and repository of open source software for public
administrations across Europe and an Observatory of case studies and news to build
a community of practitioners, which has drawn from and become a model for other
similar initiatives.

6. Softwarepublico, a Brazilian public software portal initiated by the Government.

Case Origin Funding Key
stakeholders

“Export”

Sahana Sri Lanka Volunteers;
Industry; SIDA

FLOSS
community &
industry;
emergency
response / aid
agencies

Indonesia, Peru,
Haiti

WIPO/CR/WK/GE/11/3
page 20

Ushahidi Kenya Volunteers;
Universities; UN
OCHA

FLOSS
community, civil
society

Haiti, Chile, New
Zealand, Japan,
Libya

KhmerOS Cambodia Local NGOs;
UNDP,
UNESCO, IDRC,
AECID, InWent,
Internet Society,
Government

FLOSS
community;
development
agencies;
government

South Africa
(“import”),
Bangladesh,
Bhutan

Kerala
IT@Schools

India Government School teachers,
FLOSS
community,
government

Spain (“import”)

OSOR Europe European
Commission

Public
administration,
contractors,
developer
community

EU Member
states;
“Parallels” in
Brazil etc.

Softwarepublico Brazil Government Public
administration,
contractors,
developer
community

“Parallels” in EU,
elsewhere

Note: Funding agencies listed are: SIDA (Swedish International Development Agency); UN
OCHA (Office for the Coordination of Humanitarian Affairs); InWent (now part of Deutsche
Gesellschaft für Internationale Zusammenarbeit, the German aid agency); IDRC (Canada's
International Development Research Centre); AECID (Spanish Agency for International
Cooperation for Development). The Export column lists “imports”: previous implementations
upon which the described cases drew; and “parallels”: cases similar to but not directly
following the described case.

5.1. SAHANA: DISASTER MANAGEMENT IN SRI LANKA, PERU AND HAITI

Case summary

Geography Sri Lanka

IPR Issues Open source licensed software development: the project involved the use
of existing open source software and the adaptation and development of
software released under open source licenses

Stakeholder
incentives

Volunteers and local software industry responding initially to the
catastrophic 2004 Tsunami and the lack of software tools to help
emergency responders; emergency responders and aid agencies
incentive to participate is the availability and development of unique
software tools.

Sustainability Economically sustainable through funding from donor agencies
(emergency response) globally; commercial sustainability through
furthering projects and brand image marketing for Sri Lankan software,
and training and participation for local software developers and industry.

WIPO/CR/WK/GE/11/3
page 21

Impact Widely recognized as the best and essential software tool set for
emergency response to catastrophes, Sahana has been used around the
world. It has had a major impact in terms of supporting emergency
response and recovery of economies after natural catastrophes, but also
in terms of the use of and access to Open Source software and Sri
Lankan software developers' participation in the global software developer
community.

Transferability The software developed was adapted and used in various settings –
indeed, in several of the major developing-country catastrophic natural
events since 2005, including the earthquakes in Indonesia (2006), Peru
(2007) and Haiti (2010), so it is clearly transferable. The process of
development itself was special, though not unique; a number of other
regions have seen the development of local software in response to local
conditions, which once released as Open Source have received
worldwide adoption. E.g. Ushahidi in Kenya, or GNU Health in Argentina.

Public policy
implications

Sahana and Ushahidi are examples of civil society rapidly responding
through the use and development of open source software to specific
unmet local needs that turn out to be global and more broadly in demand,
and develop local skills. Public authorities can support or even lead such
initiatives, working with civil society to rapidly develop a local response
and software developer community. If managed with local business
foundations, such as with Sahana, this can also result in developing a
global reputation for locally developed skills.

5.1.1. Tsunami

Sunday, December 26th, 2004: A devastating Tsunami hits Indonesia, Sri Lanka and many
other Asian countries. In the first week of the tsunami in Sri Lanka, 1 million people (5% of
the population) was rendered homeless, two-thirds of Sri Lanka's coast was damaged and
nearly 40,000 people died.

Tuesday, December 28th, 2004: Many different organizations in Sri Lanka start efforts to
write various bits of software to help manage the disaster. (This process also took place in
other affected countries, including India, Indonesia and Thailand.)

Wednesday, December 29th, 2004: Software developers get together at the ICT Agency in
Narahenpita, Sri Lanka to discuss ways of putting the software all together to make it easier
to manage the situation. Sanjiva Weerawarana, Founder & Director of the Lanka Software
Foundation (LSF, an industry body which supports Open Source software) called the US
Federal Emergency Management Agency (FEMA)'s CIOs office and asked for whatever
software they had, but was told that “FEMA had no software that could help; they only had
software that was used to cut checks to people after hurricanes”.

In the 3-4 weeks that followed, many individuals, universities and software companies and
Sri Lanka Telecom contributed to what became known as Sahana. While most contributors
to the initial effort were from Sri Lanka, international communities of Open Source developers
were also involved. Part of the initial development was done on computers that IBM donated
within a week or so of the tsunami. The joint effort was coordinated by the LSF. Software
was developed and went into production within a week. After about 3 months the initial
phase of software development and deployment completed.

WIPO/CR/WK/GE/11/3
page 22

In the meantime, it became clear that there was a gap in the world of disaster management
software. The state of the art that the UN team that came to Sri Lanka with was based on
extremely outdated proprietary software. Existing solutions were not easily deployable or
scalable and, most importantly, didn't embrace the Web. The tsunami provided a unique
opportunity to look at disaster management in the modern world: despite the destruction,
mobile phone and Internet networks were intact (or could be rapidly re-enabled for
emergency use with portable transmission). Clearly, there was a huge need for modern
software that could live in this world and help first responders and follow-up recovery be
more effective at responding and managing a disaster.

“We were not going to let Sahana die; we decided we are going to make it into something
the world can reuse readily”, said Weerawarana. In 2005 Swedish aid agency SIDA
approved a proposal to fund Sahana phase II (for $85,000). The justification for the
development of disaster management software under open source licenses, made in the
Sahana proposal to SIDA, bears quoting in full:

"Very few countries and organizations today can afford to invest a lot of resources in
disaster management when there is no disaster present. While this is obviously true
of poor, developing nations, it is also true of richer, developed countries as well
because there are always higher priority items that need the funding. Worse yet,
even if there are some national scale systems that may get deployed, it is very
unlikely that regional and local level systems will ever get deployed if they cost any
significant amount of resources.

Because no one is willing to pay for the software, no one is willing to build it either.
This is what we see in the world today – while disaster management software is
critically needed, there is no complete commercial or non-commercial software
solution that is widely available. Going the open source way can address both these
concerns. Using the open source development model, it is possible to develop this
software at a much reduced cost compared to pure commercial development models.
This is true because while commercial entities are not willing to invest into these
systems, there are hundreds and thousands of well-meaning IT professionals who are
very happy to donate a few hours of effort to helping build such systems. We are
already seeing this with the nascent Sahana project. Thus if there was a small team
which was driving such a project, then it is possible to get a lot of assistance from the
global IT community to make those systems truly exceptional.

Going with open source approaches can also greatly reduce the deployment cost of
this software in peace (i.e., non-disaster) times. The Sahana system, for example,
can be deployed on any PC with just a Linux LiveCD (that is, a CD from which the
entire system can be booted up and brought on-line). Thus, not only is it possible to
run this on commodity, inexpensive hardware, it is in fact possible to not even have
dedicated hardware around – just take any office PC and make that the “disaster
management center”! In fact, that is how Sahana was first deployed in Sri Lanka – on
a borrowed PC. (Later it switched to running on a borrowed server as the capacity
requirements increased.)

Thus, open source is the natural way to providing disaster management solutions."

SIDA funding for Sahana was followed by additional grants from donor agencies and industry
(both local as well as international, including IBM and Google).

WIPO/CR/WK/GE/11/3
page 23

Sahana was restructured with its own Board – members are all volunteers – with LSF
remaining the underlying legal authority for the activities that the Sahana Board governs.

5.1.2. Transferability

Sahana has been deployed and adapted all over the world. Some examples have been
listed below.

The 2007 Peru earthquake measuring 8.0 on the moment magnitude scale that hit the central
coast of Peru on Wednesday August 15, 2007 and lasted for about three minutes. The
epicenter was located at 150 kilometers south-southeast of Lima at a depth of 39 kilometers.
50% of the population was left homeless with over 500 deaths reported.42 IBM Peru lead the
Sahana deployment with the support of Lanka Software Foundation and Sahana community
of Sri Lanka. The system was localized into Spanish. The project was coordinated by the
Prime-Minister’s office in Peru, with the objective of tracking relief items and co-ordinate relief
efforts among personnel.

The 2008 Sichuan earthquake on May 12, 2008 in Sichuan province of China killed at least
68,000, injuring 374,176. The earthquake left about 4.8 million people homeless. Set up at
the request of Chengdu Municipal Government and was deployed as a collaborative effort by
IBM (CSR), Lanka Software Foundation of Sri Lanka (LSF), Sahana-community & the Trinity
College, Sahana deployment in Chengdu was used to register shelters, track affected
persons and manage relief personnel and supplies.

Deployed in 2007 as a measure of emergency preparedness, Sahana Disaster Management
system is currently in function at the Office of Emergency Management (OEM) of New York
City Council for New York Coastal Storm Planning. The Sahana system is capable of
coordinating a mass evacuation of 6 million people in the New York City area in the case of a
hurricane, and is continually being updated to accommodate the city’s changing population.
It currently tracks 26,000 relief workers, volunteer staff and evacuees in over 500 shelters.
This project was carried out as a collaborative effort between the IBM Crisis Response Team
(IBM CRT), IT Crisis of USA and Lanka Software Foundation of Sri Lanka (LSF).

In the afternoon of 12 January 2010, a 7.0 magnitude earthquake struck the poverty-stricken
Caribbean nation of Haiti. The impact of the earthquake, occurring just south of the densely
populated capital city of Port-au-Prince, was devastating as scores of multi-storied concrete
structures in the capital and surrounding municipalities collapsed, killing tens of thousands
instantly, injuring and trapping thousands of others beneath the rubble.43 The Sahana
Software Foundation and the Sahana community responded immediately, with a hosted
instance of Sahana on a public website that served to fill gaps in the information
management requirements of the massive relief operation. Other organizations deployed
adaptations of Sahana tools – e.g. the National Library of Medicine (NLM), the world’s largest
medical library and an arm of the US National Institutes of Health (NIH), released a Sahana-
based “Lost Person Finder”, called “Haiti Earthquake Person Locator”.

5.1.3. Impact in Sri Lanka

The immediate impact of the Sahana initiative was of course mostly felt outside the field of
software – in the recovery from the 2004 tsunami. However, there has also been a clear

42

 See http://respere.org/deployments
43

 Source: Chamindra de Silva and Mark Prustalis, 2010. “The Sahana Free and Open Source Disaster Management System in

Haiti” in ICT for Disaster Risk Reduction Case Study 2, published by UN-APCICT/ESCAP, May 2010.

WIPO/CR/WK/GE/11/3
page 24

impact in terms of Sri Lanka's role in software development. Open source software turned
out, with Sahana as the prime example, as a great enabler for Sri Lanka to enhance its
position in the global software ecosystem. Being a source of mission-critical software that
has literally saved thousands of lives around the world provides a credibility that would be
hard to earn. A key factor in this has been the open source license, which allowed for rapid
deployment and adaptation of the software to local needs – without which the usefulness of
the software, however technically capable, would have been severely limited.

Beyond Sahana, the key aspect of the LSF strategy has been “to create a platform on which
Sri Lanka can build”, according to Weerawarana. He draws a parallel to another sector for
which Sri Lanka is well known – tea: “Sri Lanka has a few companies which are now global
consumer brands in tea. That was only possible because of the brand Ceylon Tea. Having
that brand enabled differentiation and enabled our companies to leverage that to compete for
consumer recognition and adoption.”

LSF's strategy is to create a group of people who are global contributors to FLOSS to such
an extent that the world recognizes Sri Lanka – which compared to its much larger
neighbour, India, has a small software industry – “as a powerhouse of open source
development”. This strategy has seen some success. For the first few years the global
Summer of Code contest run by Google, University of Moratuwa Sri Lanka was the winner of
grants. In the Apache software project – a global open source software application that
powers 70% of the world's websites – there are more Sri Lankan software contributors than
from any other country outside the US and a few western EU nations. Sri Lankan produced
software, distributed under open source licenses, has been globally adopted, riding on the
reputation of Sahana and contributions to Apache projects. “We have demonstrated what is
possible if you take the best people in a poor developing country and give them the right
tools, environment and opportunity to compete in the global stage. [The open source
software model's] beauty is that it allows anyone to compete globally - it is not necessary to
be in San Jose or Boston or London to compete!”, concludes Weerawarana44.

5.2. USHAHIDI: MAPPING AND VISUALIZATION IN KENYA AND CHILE

Case summary

Geography Kenya

IPR Issues Open source licensed software development; open content licensing.
The project involved the use of existing open source software and the
adaptation and development of software released under open source
licenses; a major part of the use of the project related to geographical
mapping of data points submitted by large numbers of individual
volunteers.

Stakeholder
incentives

Volunteers responding initially to the violence around the 2008 Kenyan
elections; citizens and civil society; donor agencies and various public
agencies.

Sustainability Economically sustainable through funding from donor agencies globally;
possible commercial sustainability through commercial applications of
“crowdsourced” mapping technology

Impact Widely recognized as an effective, rapid solution to collecting, organizing
and visualizing geographic data, Ushahidi has been used around the

44

 Correspondence with the author.

WIPO/CR/WK/GE/11/3
page 25

world. It has had a major impact in terms of supporting emergency
response and recovery of economies after various crises, but also for
tasks such as monitoring elections. It is a key example of appropriate
mobile computing, with its dependence on and exploitation of mobile
networks

Transferability The software developed was adapted and used in various settings – to
monitor elections in India, Mexico, Lebanon and Afghanistan; track
unrest in the DR Congo; monitor medicine stocks in Zambia; map
events and activities in Haiti, Chile, New Zealand and Japan after
earthquakes and Libya after the violent events recently. So it is clearly
transferable. The process of development itself was special, similar to
Sahana. Ushahidi's model of locational input means that each time it is
used, a community of participants and contributors is being built,
demonstrating further its transferability.

Public policy
implications

Sahana and Ushahidi are examples of civil society rapidly responding
through the use and development of open source software to specific
unmet local needs that turn out to be global and more broadly in demand,
and develop local skills. Public authorities can support or even lead such
initiatives, working with civil society to rapidly develop a local response
and software developer community.

Following the violence in Kenya after the 2008 elections, it was apparent that a method to
track events - being able to see where disturbances, crimes and other events were
happening – was an important way to coordinate information from news sources as well as
local people. The volunteer team behind Ushahidi rapidly developed a tool for Kenyans to
report and map incidents of violence that they saw via SMS, email or the web. Within a week
Ushahidi had gone to live deployment. The team behind Ushahidi became an organization
that created a free and open source mapping and content management system which can be
used by organizations worldwide in similar crisis-related situations. The main goal of the
organization is to create a system that facilitates early warning systems and helps in data
visualization for response and recovery.

Erik Hershman, director of operations at Ushahidi says45, ‘We take the stance that you go for
the lowest common denominator, which is the SMS enabled mobile phone. So you take your
Nokia 1100 and you say, “If we can make the technology work on this that’s useful for people
both on incoming messages and outgoing messages then we have something that’s valuable
and let’s see what people do with it.” The first iteration of that was in Kenya during the post
election ballots. We quickly created a website. It was a mash-up of maps and incoming
mobile phones messages that we called Ushahidi, which means testimony in Swahili, then
what we did was get funding to build a global version of this.’

Following the initial deployment, Ushahidi received support from a number of donor agencies
and foundations, especially for deployments in different regions. One such major
deployment was in Haiti. As Zook et al46 write, “When the magnitude 7.0 earthquake struck
Haiti on January 12, 2010, there was an immediate need for maps. Emergency responders

45

 Source: UK Design Council, 2010. “Case study: Ushahidi”. Available online at:
http://www.designcouncil.org.uk/our-work/challenges/security/design-out-crime/case-studies1/ushahidi/

46
 Matthew Zook, Mark Graham, Taylor Shelton & Sean Gorman, 2010. “Volunteered Geographic Information

and Crowdsourcing Disaster Relief: A
Case Study of the Haitian Earthquake”. World Medical & Health Policy. Vol. 2: Iss. 2, Article 2 (2010).
Available online at: http://www.psocommons.org/wmhp/vol2/iss2/art2/

WIPO/CR/WK/GE/11/3
page 26

had to know where the people most in need were located and how to get assistance and
relief to them. Large parts of Haiti and its capital, Port-au-Prince, lacked adequate coverage
in the standard web mapping services […] that people in most of the developed world have
grown accustomed to using. As one of the world’s poorest countries, Haiti had simply not
provided the kind of demand for online mapping that drove its expansion elsewhere. Post-
earthquake, the demand for spatial information and online maps increased tremendously
and, given the urgency of relief operations, the ability to crowdsource the data collection
process became particularly important.” Ushahidi was used to allow volunteers across Haiti
to notify the system of events and geographic markers from different locations around Haiti,
and visualize and monitor the results. Ushahidi's ability to receive input by text message
(SMS) meant that in Haiti – as in Kenya and elsewhere – the simplest of mobile phones
could be used to provide geographically marked, accurately time-stamped reports.

“Crowdsourcing”, or using the collective power of large numbers of possibly anonymous
individuals, has become an increasingly well known method of solving problems ever since
the popularization and explosive growth of Wikipedia. It is a good illustration of the power of
open source licensing to promote software access that one of the most effective, widely used
and innovative applications of crowdsourcing – with real crowds of ordinary people using the
simplest mobile phones – was developed not in Silicon Valley but in Nairobi.

5.3. KHMEROS: LOCALIZATION AND SOFTWARE TRAINING IN CAMBODIA

Case summary

Geography Cambodia

IPR Issues Open source licensed software development: the project involved the use
of existing open source software and the adaptation and development of
software released under open source licenses. As a background - special
LDC status under TRIPS allowed Cambodia to not enforce software
copyright, removing one incentive to use Open Source Software (the zero
license fee) as the effective license fee for proprietary software was zero.

Stakeholder
incentives

Primary incentive for stakeholders (NGO, government and Development
Aid Agencies) has been the adaptation of software to the local Khmer
language, for which open source software was the most appropriate and
cost-effective; a further incentive has been to spread the knowledge built
up with other countries in a similar situation (Bhutan, Bangladesh)

Sustainability The economic sustainability is two-fold; operational sustainability for new
development of software is provided for through development funding (i.e.
non-commercial). However, the output, software distributed under open
source licenses, is by definition a sustainable, widely used, essential end-
product regardless of funding for future developments.

Impact From the initial impact – allowing Cambodians to use computers in their
own language – to the continuing effect of training local software
developers and enabling computer use in other countries, the impact has
been high.

Transferability As with most open source software localization efforts, this drew on
previous knowledge and cases – specifically, translate.org.za, an effort to
provide computer access in local South African languages (under open
source licenses) funded by the Shuttleworth Foundation. The KhmerOS
project itself has replicated parts of its activities in Bangladesh and

WIPO/CR/WK/GE/11/3
page 27

Bhutan, demonstrating transferability.

Public policy
implications

For many countries with local languages, whose users are disadvantaged
in accessing ICTs, FLOSS provides a way to make computers accessible
in languages previously unsupported. Localization initiatives improve
access and revitalize vernacular communications, and provide local
software development skills

5.3.1. Computing in Khmer

From 2004 to 2010, the KhmerOS / Open Schools Program has changed the map of
Information and Communication Technology (ICT) in Cambodia, making access to
technology widely available to citizens by the simple means of translating free software to
Khmer (Cambodian) language, providing training, and supporting the government on policy-
making and planning, to ensure that these computer programs are used.

This has led to a strategic advantage for ICT in Cambodia, by ensuring that software is
available to people in their own language, and that all new high school graduates are familiar
and comfortable with Open Source Software applications. This new situation facilitates
penetration of Open Source Software in both government and the private sector, reducing
the financial needs of all of them, and potentially ensuring faster deployment of ICT around
the country.

The use of local language in computers enables access to information and communication
tools for the 98% of the population that does not have sufficient knowledge of a foreign
language to use computers that are not in Khmer. It allows teaching of ICT in schools, as the
base for developing professional skills, while facilitating automation of government offices
and SMEs, effectively reducing the digital gap. Widespread use of ICT in the local language
eliminates an important barrier to economic development.

KhmerOS started in 2004 as a technical NGO-based project to localize and adapt to Khmer
culture Free/Libre/Open Source (FLOSS) computer applications, producing also
documentation and training materials for this software, as well as new fonts and keyboards
that supported the standardization of the use of Khmer in computers.

After working for two years with other government agencies, in 2007 the Open Schools
program started as a joint initiative between the Cambodian Ministry of Education Youth and
Sport and the Open Institute (the NGO that houses the KhmerOS project). While using the
software that had been developed, the goals of this new initiative were more centered on
using ICT to improve the quality of Education and on offering ICT-based professional skills to
high school students.

From 2007 to 2009 the Open Schools program has developed a five-year Master Plan for
ICT in Education, created curricula for students and for teachers, as well as the necessary
textbooks, and trained ICT teachers in all the schools in the country that have computers for
education.

The participation and experience of the UNESCO Asia and Pacific Regional Bureau for
Education, as well as its Phnom Penh office has been crucial to develop the ICT policy and
to turn it into actual plans accepted by the Ministry of Education, Youth and Sport.

5.3.2. ICT context in Cambodia

WIPO/CR/WK/GE/11/3
page 28

In 2004 Cambodia was in the middle of transforming itself from a market with few computer
users and some small computer shops into a country where the use of computers was
starting to become common. New ISPs started to take a part of the Internet connection
market, which did not grow as fast as expected, due to the high price of government-
controlled connectivity. Most of the software available and used was proprietary, mostly
unauthorized copies easily acquired in markets for a few dollars, and available in foreign
languages (English).

The government was nevertheless working on ICT policy, trying to understand and unblock
factors that might delay economic development for lack of access to ICT. In 2003 the
National ICT Development Authority of the Royal government of Cambodia (NiDA) started to
develop a National ICT policy with the support of the UNDP Asia-Pacific Development
Information Programme (UNDP-APDIP). In 2004 a first draft of this policy was being
publicized; it included simple provisions for the use of Open Source Software but nothing
about localization or the use of Khmer language in ICT.

The lack of consideration for the national language was a product of lack of awareness on
the advantages of the using local language software, as all those working on the policy and
all computer specialists spoke English or other foreign languages well. As in some other
developing countries, it was assumed that people who could afford computers would be able
to (and intend to) use them in foreign languages such as English. Moreover, there was no
short-term likelihood of Khmer support being available.

The International Agreement on Trade-Related Aspects of Intellectual Property Rights
(TRIPS) had granted Cambodia, as a Least Developed Country, a special moratorium until
2013 under which it did not have to have or enforce any anti-piracy laws. Least developed
countries (LDCs) were accorded special and differential treatment pursuant to Article 65.5
and 66.1 of the TRIPS Agreement. They were not required to implement the TRIPS
Agreement (except for national and most-favored-nation treatment) until January 1, 2006,
and they were not prevented from reducing their level of TRIPS consistency prior to that
date. The date for TRIPS compliance was subsequently extended until July 1, 2013.

The economical situation of Cambodia, and the uncontrolled use of proprietary software used
without paying for licenses made Cambodia an uninteresting country for proprietary software
companies, who did not see how to make a profit in Cambodia in the short run. They did not
consider interesting investing in either preparing the software for the use of Khmer script, or
translating it and adapting it to Khmer. No software in Khmer language was available in
2004.

Also, given again the economical situation, in which the cost of a computer (hardware only)
was higher than the average yearly income for a Cambodian, duplicating this cost by paying
for software licenses would have put computers even further away from the economic
possibilities of most Cambodians. As only computers in English could be used, computers
remained accessible only to the elite who knew or could learn English well.

5.3.3. Free and Open Source Software in Cambodia

In 2004 there was very little awareness of the existence of Free/Libre/Open Source Software
(FLOSS) in Cambodia. Training institutions teaching the use of computers used proprietary
software applications in English. UNDP-APDIP was a strong advocate of the use of FLOSS,
and had at least participated in introducing the use of FLOSS in the draft ICT policy. The
Government of Japan, through CCIC (Center for International Cooperation for
Computerization), was organizing meetings all over Asia promoting the use of FLOSS in

WIPO/CR/WK/GE/11/3
page 29

governments. Officials of the Cambodian National ICT Development Authority (NIDA) had
been attending these meetings since 2003. Cambodia and other governments hoped that
this would end up turning into direct support from the Japanese government of FLOSS
activities in the target countries, but this never materialized.

Meanwhile, IDRC (International Development Research Center, Canada) created in 2003 the
PAN Localization project, in theory aimed at creating localized software in eight Asian
countries. The program supported FLOSS in several countries, but in the specific case of
Cambodia, it supported the creation of computer products for Windows platform, none of
them in Khmer, and none of them released for free at the time.

5.3.4. Planning Khmer computing

The original version of the KhmerOS project was designed on the second half of 2003 by
Javier Solá, a Spanish computer scientist who was traveling through Cambodia. The goal of
the project, from the very beginning, was to ensure that the lack of software in local language
would not be a barrier to the usage and development of ICT in Cambodia. The project
included the localization (translation and adaptation) of software, its documentation,
dissemination, and training of prospective users. As it was not possible to do this localization
work with proprietary software – which only the rightsholders can modify and adapt –
Free/Libre/Open Source Software (FLOSS) was chosen for the project.

The project first planned to promote the use of FLOSS Khmer language tools in the
proprietary Microsoft Windows environment, and then gradually push for change to the use of
the FLOSS platform Linux using Khmer language as a base.
After attempting – and failing - to create a consortium of private IT companies that would be
interested on having this work done, KhmerOS became a project inside Open Forum of
Cambodia (OFC), an NGO. With some funds from the NGO, and a few donations from
private individuals, the project got some equipment and was able to hire two computer
scientists in February 2004, starting the first real part of the work.

5.3.5. Finding support: a community, donors & government

From the very beginning KhmerOS attempted to create a local community of users, through
its website: www.khmeros.info. Started in 2004, the website now has more than 6,300
registered users, and serves over 160,000 pages per month, with active forums, serving as a
reference for the local FLOSS and local language computing community.

From the very beginning, finding funding was a priority. A grant from the Small Grants
Program (several donors headed by UNDP-APDIP) was awarded to the project to write a
FLOSS Localization Toolkit in which the experiences of the project were shared. This grant
would be later followed by small grants from the Internet Society and UNESCO, giving the
project enough funds to hire four more members for the localization team.

In 2005, InWEnt Capacity Building International, a German development aid agency, started
supporting the training activities of KhmerOS with advice and funding, through its training
project it@foss. Also in 2005 Javier Solá created in Spain - together with localization
specialist Alberto Escudero - the WordForge Foundation, an organization aimed at
supporting what it defined as “Digitally Endangered Languages”
www.wordforgefoundation.org). The new foundation would become instrumental in securing
– since 2006 – funding from the Spanish Agency for International Cooperation for
Development (AECID). This would become the largest donor of the project, helping ensure
that its results had the desired impact.

WIPO/CR/WK/GE/11/3
page 30

In 2004 the Ministry of Education, Youth and Sport, with the support and help from UNESCO,
was preparing its ICT policy. The participation of the Open Forum of Cambodia led to
ensuring that both the use of Khmer language in ICT and the use of Free and Open Source
would be recommended in the policy document that was finally approved in January 2005.
In 2005, Open Forum was approached by National ICT Development Authority (NiDA, the
inter-ministerial body for ICT Development). A collaboration was started that would make the
KhmerOS initiative a joint project of its parent NGO and NiDA. Several things came out of
this collaboration:

• A Master Plan for deployment of FLOSS in Cambodia was developed. The plan was

published (as a draft) and has been used as a reference for actions to be taken;
parts of it have been adopted in the 2009-2013 Master Plan for ICT in Education

• KhmerOS members were involved in the improvement of the National ICT Policy,
ensuring that Khmer language, Free and Open Source and Open Standards were
part of it.

• A standard keyboard – based on the previous work by KhmerOS, and the first
keyboard for use in Khmer – was defined as the NiDA Standard Unicode Keyboard,
and publicized.

In 2005, with the support of the it@foss program of InWEnt, KhmerOS prepared and printed
a Khmer user guide for OpenOffice (the FLOSS office document software application,
localized to Khmer by the project), and started an ambitious training plan of government
officials, computer teachers, NGO workers, and students in Phnom Penh and several
provinces. They were all trained on the use of Khmer language FLOSS applications.
In 2006 KhmerOS organized a National Typing contest, aimed at encouraging the learning of
Unicode typing. Local contests were held in province capitals, and then a Nation-wide final
was held in Phnom Penh, with the best three typists from each province. Spanish
development aid from AECID started funding the project in 2006, covering all the needs that
had not been covered until then for lack of sufficient funds. From 2007 onwards KhmerOS
continued giving support on the use of Khmer software to government bodies, responding to
their demand. The Ministry of Information, the Ministry of Culture and Religion, the Ministry
of Interior, the Ministry of Agriculture, the Ministry of Rural Development, the Ministry of
Woman's affairs, the Royal Palace, the Senate and the National Assembly have had their
staff trained on the use of Khmer language FLOSS applications by the KhmerOS team.
Open Institute has also trained computer scientists from the Ministry of agriculture, staff from
NGOs, universities, and computer distributors on the administration of the FLOSS operating
system Linux for use on file servers and Internet servers. As a consequence of these
actions, the Royal School of Administration has started to teach the use of FLOSS to its
students.

With cooperation and support from the Open Institute, the Cooperation Committee for
Cambodia (CCC), the largest association of Cambodian NGOs, has started its own training
program for NGO workers on the use of FLOSS in NGO’s. The program became self-
sustained in 2010.

5.3.6. Cooperation with other countries

KhmerOS has produced, from the very beginning, documents for replication of the project in
other countries, as well as supported other collectives who wanted to do work on Khmer
language. The localization effort also drew on efforts from other countries, such as
translate.org.za (a FLOSS localization project for 15 South African languages funded by the
Shuttleworth Foundation). KhmerOS has developed a localization project for the Tetum

WIPO/CR/WK/GE/11/3
page 31

language in East Timor, supported a similar effort in Uganda, and given direct technical
support and/or advice for localization in Laos, Vietnam, Myanmar, Bhutan, Nepal,
Bangladesh, Tanzania and - to a lesser degree – to other countries in Asia, Africa and Latin
America.

KhmerOS members participate directly in some Open Source projects, such as OpenOffice,
where they have provided code for the inclusion of the languages of several countries in the
program, as well as manuals for how to do the technical localization of the OpenOffice code.

In 2005 KhmerOS started the WordForge project, dedicated to produce localization tools that
used all the know-how that we had both accumulated on localization. The goal of WordForge
was to facilitate the localization process in other countries that wanted to follow a similar
process. The WordForge Foundation was created in Spain to find funding for this project.
KhmerOS continues to working on this tool now with developers from Bangladesh and Spain,
and this has led to the most advanced tool available for FLOSS localization, using Open
Standards to produce high-quality language translations with volunteer and/or minimally-
trained translators.

In 2007 KhmerOS/Open Schools Program was a finalist of the Stockholm Challenge/GKP
Award in the Economic Development category. This prestigious international award has
been given by the city of Stockholm since 1999 for the world's best initiatives using ICT for
development.

5.3.7. Conclusion

The KhmerOS project shows that localization of Free and Open Source software produces
sufficient added value - in countries in which there is not other software in the local language
– for change to the use of FLOSS to take place. Together with the Open Schools Program it
also shows the need to work on ICT policy as the vehicle that will lead the change. While
national ICT policy must be affected, the impact of Education ICT policy is the real path to
change, as it affects what users will get used to and use in the future.

The Open Schools Program has shown how a strong government/NGO partnership, with
support from engaged donors and development partners, can produce effective policy and
implementation of ICT in Education in a two year period, ensuring a clear path for a future in
which support for use of ICT will be fully integrated in the Ministry, its overall five-year plans,
and in its Annual Operational Plan and budget. Meanwhile, the Master Plan provides a guide
for its development partners on the path that the Ministry wants to follow and for which it
needs support.

Support from government is important to be able to penetrate society, and collaboration with
international organizations is a good channel to reach the correct bodies of government.
Localization of software without supporting materials (books and training materials) does not
penetrate society, as resistance to change is strong. It is possible to start a project small,
with few resources, but is also important later to be able to enlist sufficient financial resources
for the development of training materials and for training.

Localization of FLOSS is a technical process that can be done in any country, if the
necessary resources are available. Any materials, terminology or any other type of
resources can be obtained. Staff who is proficient in their own language and have sufficient
knowledge of English can act as translators, with checking the local language being the main
skill required.

WIPO/CR/WK/GE/11/3
page 32

 While still at an early stage, BanglaOS – the replication effort in Bangladesh – demonstrates
that the model can be reproduced in other countries in a much shorter period of time of what
was required in Cambodia, by working in parallel on localization and on policy, collaborating
from the beginning with the national Education system.

5.4. IT@SCHOOLS: COMPUTERIZING STATE SCHOOLS IN KERALA, INDIA

Case summary

Geography India (Kerala)

IPR Issues Open source licensed software adaptation & deployment: the project
involved the use of existing open source software and the adaptation and
development of software released under open source licenses.

Stakeholder
incentives

Primary incentive for stakeholders (Kerala state government, school
teachers & teacher trainers) has been the adaptation of software to local
needs and cost-effectiveness, for which open source software was the
most appropriate

Sustainability The major costs are operational – teacher training – and are part of the
general education budget of the government.

Impact As the leading example of state-wide computer training in schools, this
project has had a high impact.

Transferability As with most open source software school deployment efforts, this drew
on previous knowledge and cases. One well documented related case
was the adaptation, development and widespread deployment of Open
source software across schools in the Spanish region of Extremadura.
However, despite the technical similarities in the software applications,
wide region-to-region differences remain in the political, economic and
organisational structure, which is the main part of any ICT-in-schools
effort.

Public policy
implications

Supporting initiatives that use open source in education, with the
involvement of school teachers & teacher trainers, can have significant
impact on software access & use, local software skills development, and
local pride & sense of ownership and achievement, at relatively low cost

The Kerala IT@school programme provides computer education and computer

enabled education through FLOSS tools to 1.6 million students annually in 2,738 high
schools across 14 districts in the state, covering the last four years of schooling (grades 8 to
12 in the Indian system).

Initially, a training program was to be based on proprietary software. Following public
protests from teachers and others, the state government reconsidered the use of proprietary
software, in particular based on the argument that using it for training would make the
education system dependent on monopoly vendors. Basic changes were made to the
program to support the goal of universal access, including: providing large-scale in-house
teacher capacity building programs; combining learning computer skills with computer-
enabled learning in other subjects; and giving ownership to teachers to experiment with
open source educational software in the classroom. Thus, instead of relying on vendors and
investment in infrastructure, Kerala has chosen to invest in teacher capacity building on
FLOSS, thus leading to the creation of an open source software eco-system.

WIPO/CR/WK/GE/11/3
page 33

5.4.1. Greater focus on computer aided learning

The teacher training program was designed to make the school teachers acquire basic
computer literacy and open source educational software, but also to use computer aided
learning to teach their own subjects. Teachers were also trained to install software and
maintain hardware, making teachers comfortable with using computers. The rich availability
of FLOSS educational tools and their provision to the schools under the program, coupled
with teacher training, has enabled computer aided learning.

Well-qualified external experts trained an initial set of master trainers, who then trained their
teacher colleagues. This removed the need for the external experts to be continuously
required to train the entire teacher community. This saved costs, but perhaps more
importantly, provided teachers with a sense of ownership and control of the program.

The teacher training systems, which are fully responsible for the pre-service and in-service
training of teachers, were also responsible for training teachers computer skills. Since the
training faculty is within the state education system, it ensured computer proficiency was
developed and maintained as part of the on-going teacher training process. (It is important to
note that the government education system in India has one of the largest, if not the largest,
pool of teacher trainers in the world - there are more than 80,000 teacher trainers at cluster,
block and district levels, whose primary responsibility is teacher training, both in-service and
pre-service. Most of these teacher trainers or educators have a degree in education and
have teaching experience in schools).

Significantly, this shift has also changed the nature of the ICT in schools program from being
a centrally designed and implemented, with external resource persons, to owned by the
schools, and supported by the school system. As an evaluation of this program noted, this
was consciously in line with the philosophy of free software: it ensures the freedom to the
school and the teacher to develop the curriculum and pedagogical methods the way they
want to, which ensures their complete ownership and enthusiasm in the program.

5.4.2. Use of FLOSS educational software

Using regular in-house teacher trainers meant that open source knowledge was closely
adapted to the needs of the teachers. Open source educational software is best used by
teachers who understand the subject matter being taught, not just the software. More than
technological expertise, what is required is that teachers can explore the software and
determine for themselves how best to adapt it to their curriculum.

This process of contextualized ICT education by teacher support system allows for teachers
to integrate computers into their own regular subjects, converting the computer from being a
'subject of learning' to 'process or method of learning' which took the program to much
superior level of quality. This is seen from the continuous enrichment of the learning
processes through the relevant use of additional tools. The 'school wiki' program has trained
teachers in publishing digital content on the web to allow each school to have its own wiki
page for sharing its work and ideas. This is also keeping in line with the collaborative
philosophy echoed by FLOSS.

5.4.3. Systemic capacities for teacher education

The ‘Education Technology’ (ET) wing' in the District Institute for Education and Training
(DIET) has the responsibility of understanding the role and possibilities for the use of
technology in the school system. Making computer training an in-house integrated activity of

WIPO/CR/WK/GE/11/3
page 34

the school support system serves as an opportunity to increase the specialisation of ET
faculty within the DIET.

Making the ET faculty responsible for the training for ICT in schools, including providing them
with in-depth understanding covering the role of ICTs in learning and in society will
strengthen the role of ICTs in the education system, making computer learning an integral
part of the learning processes in schools. This also adds to the stature of the teacher
educators as trainers in this ‘new’ arena of educational resources, methods and processes.

There is little justification in having only ICT training outsourced (to, e.g. private vendors)
when all other kinds of educational training is done in-house, within the public teacher
training system. If ICT education is seen to be a critical learning area, there is all the more
reason to integrate it with the core of the education system, and use the existing capacities
for in-service teacher education, instead of outsourcing the activity. This also implies that
computer learning programs need to prioritize the needs of teacher educators and build their
capacities for them to be able to work with teachers and schools, and this teacher
preparation needs to precede the implementation of ICT in schools.

5.4.4. Free and customizable software

The Kerala project has made a significant effort in aligning the introduction of ICT to the
learning contexts of the schools. Firstly, the department realized that office automation
software (while important to learn) was not really the primary application for schools and that
education required a larger set of software tools and applications that teachers and students
could use and adapt for their own learning. The constructivist learning approach emphasized
by the National Curriculum Framework 2005 specifies that learning happens not when the
learner is merely the object of predetermined learning material, but requires the active
engagement of the learner with the medium itself. These two imperatives – a large set of
software tools, and the necessity of the learner to actively engage with these tools, led to the
realization that proprietary software platforms would not suffice. Such platforms would not
allow the learner to rise above the level of an 'end user', with no involvement in
understanding the 'tools' and possibly 'co-constructing' them. Moreover, the pay per license
model of proprietary software would make computer education enormously expensive, and
unjustifiable in the context of a country like India.

Kerala's education department thus wanted to begin with a customized software distribution
that would be relevant to, and appropriate for, its schools. While most computers come
preloaded with Microsoft Windows and a few other applications such as Microsoft Office, with
an English language interface, the department realized that this would not meet its goal of
building in a large set of contextual educational applications, with local language interfaces.
The choice of Free and Open Source Software (FLOSS) was thus logical. A FLOSS based
approach could allow the department to take an existing software set and customize it in two
ways – make the software interface completely available in the language spoken in the state
(Malayalam), and to also bundle in hundreds of educational applications all available on a
free and open source model along with the basic operating system.

The completely 'in-house' developed process and software design has also meant savings of
millions of rupees that would have gone to vendors in the usual 'PPP' models, and these
savings have supported the investments in further building in-house capacities for shaping
new educational processes and curriculum using digital technologies, the role and scope of

WIPO/CR/WK/GE/11/3
page 35

which in any education system will only keep increasing. According to a recent study47, the
Government of Kerala saved around 500 million rupees ($11 million) as a result of opting for
FLOSS. Even more importantly, FLOSS by reducing the costs of acquiring a computer helps
in the faster and cheaper dispersion of computers outside the schools, in the homes of the
students. Students and their parents are able to take the software used in schools and use it
at their homes without having to either pirate proprietary software or pay huge license fees.
This model also helps prevent complete dependence on technology vendors as well as resist
marketing pressures.

5.4.5. Educational and local language software

Similar to the situation in Cambodia, South Africa, Bangladesh and elsewhere, the
adaptability of open source software to local languages is directly related to its increased
adoption. Schools in Kerala find the application interface in the local language, Malayalam,
compatible with their medium of instruction. A local language software distribution has been
made possible due to the conscious choice of free and open source software which has
enabled the government to customize applications in the local language, and equally
importantly to make available large number of educational software applications available to
all schools at practically no cost. Students are therefore not limited to learning only office
automation applications – which most typically associate with 'learning computers'; they
engage with computers on a variety of areas from mathematics to science to environmental
sciences.

The software distribution was customized from the publicly available Debian GNU/Linux
operating system. The popular Edubuntu distribution which is specifically aimed at schools is
also derived from the same Debian distribution and has hundreds of educational applications
inbuilt. The issue of license fees / free sharing is not restricted to the operating system or
office applications, but extends to educational resources. Educational software and content
offered by large education technology companies is usually on a per-user license fee basis,
which would make scaling and replication expensive. The Kerala SIET has created more
than a thousand films on different subjects and provided them to schools for the 'digital
libraries'. These can be freely copied and shared as required at marginal costs equaling just
the cost of media.

5.4.6. Factors favoring a FLOSS eco-system in Kerala

It is worth exploring specific factors in Kerala that contributed to the success of the open
source model in the state. First was the involvement of teachers' unions, who were
consulted in the design and roll-out of the program. This helped get a greater support and
buy-in of the teachers in implementing the program and in getting support and participation of
the teachers for FLOSS. Teachers found installing and using FLOSS simple and did not
want the program to use proprietary software. Second, the fact that most schools in Kerala
have reasonable teacher-pupil ratios meant that schools could spare teachers for
participating in the computer training programs and have one teacher in each school
designated as a “computer teacher”. Third, the teacher training institutions of Kerala are also
well staffed and could take on the responsibility of learning and teaching FLOSS on
computers.

47 Rahul De, 2009. Economic Impact of Free and Open Source Software – A Study in India. Indian Institute of

Management, Bangalore. Available at: http://www.iimb.ernet.in/~rahulde/RD_FOSSRep2009.pdf

WIPO/CR/WK/GE/11/3
page 36

While the above mentioned set of factors may be within the influence of any public sector
education system, there are other factors which are perhaps unique within India to the state
of Kerala. These include very high levels of literacy, greater urbanization, higher availability
of transport, communication facilities and electricity. Kerala's 'Akshaya' program of the IT
Mission in Kerala, which created computer infrastructure in villages across the state, in the
form of tele-centres, and provided basic computer literacy to one member of each household,
would also have helped in providing local capacity building and hardware / software support.
The political-ideological inclinations of the left-of-centre government in the state could also
be a factor that favored the spread of FLOSS in the state, although open source policies
have received support across the political spectrum in India48.

5.4.7. Curriculum – a critical factor of the FLOSS eco-system

Curriculum design played a key role in the success of the Kerala program. The implications
for pedagogy and learning arising from a casual approach to ICT and ICT-based curriculum
include both making computer learning largely unconnected to the larger curricular design of
the education system and not leveraging the best FLOSS possibilities for learning. Vendor-
driven or product-driven ICT policies are typical in many deployments of software – and
related references to software in curriculum.

In Kerala, a vendor-driven approach was consciously excluded. Instead, the curricular
content for the program was created through workshops with regular teachers and
educationists were clearly in charge of the process. The program supports the development
of curricular material by teachers in each school, with school “wikis” providing a grassroots,
interactive and collaborative content creation process at the local level.

5.4.8. Exploring new possibilities for learning through FLOSS educational software:

Education through computers in schools has enormous possibilities. Providing access to a
wide variety of information sources (reliance on the single text book is an acknowledged
limitation of learning possibilities in schools), connecting students to peers and other learning
community members (which would transcend space and time), creating new digital artifacts
and publishing / sharing the same, are some new possibilities that can significantly impact
learning processes. (At the same time, there are new skills that may be required to be learnt,
for instance, learning to discriminate and identify authentic from spurious sources of
information, which would be a component of critical pedagogy, defensive access to the
internet to protect against 'virtual predators' etc.) However for any of these possibilities, it is
essential that the entire system of learning be grounded and integrated in the mainstream
education system and its design and implementation driven by the members of the system
itself - comprising of teachers, teacher educators, students and educationists. The
collaborative scope of FLOSS allows this.

Over time, the outcomes of the efforts of the vendors and technology experts would become
the default curriculum which can have negative implications for learning. Use of FLOSS in
schools removes the dependence on external vendors, thus giving complete ownership to
the school and its teachers.

5.4.9. “Public Software”: using terminology to facilitate non-technical discourse

48

 E.g. the 2009 manifesto of the right-of-centre BJP party: http://public-software.in/BJP-IT-vision and that of
the left-of-centre CPI(M) party: http://public-software.in/CPI%28M%29-manifesto

WIPO/CR/WK/GE/11/3
page 37

As a follow-on to the IT@Schools project in Kerala, and through the discussions and
interactions in the EU-funded FLOSSInclude project, the notion of “public software” emerged
as a term, and strategy, for the use of and access to software for the public good. This has
been the subject of workshops and discussions highlighted on the Public Software portal
hosted by the NGO IT for Change, and has helped provide political and policy-maker support
for public access to software. As in the case of public education or public health, public
institutions are, following this argument, responsible for ensuring access to public software as
well as support public participation in its creation and sharing.

“Software developed for public service has a unique context and objectives deriving from
those of public service; with its imperative of providing public goods and ensuring equity and
social justice. It is well known that private and commercial actions have very different
context, motives and considerations than public actions. For instance, the largest possible
reach and diffusion as well as transparency of actions are basic to public service, which are
not necessarily values espoused by private and commercial players. Thus public software
would cater to the requirements of universal access, transparency and participation. Public
Software being publicly owned, allows for its free sharing as well as modification by all.
Public Software is thus Free Software. In addition, public software is also a public good.
While Free Software requires the freedoms of the individual user to use, study, share and
modify the source code, in addition to this, public software emphasizes its 'public good'
nature and vests on government the responsibility of ensuring that basic software required
for negotiating the digital world is freely available to all.”49

5.5. OPEN SOURCE OBSERVATORY AND REPOSITORY (OSOR): FACILITATING

KNOWLEDGE SHARING AND COMMUNITY BUILDING IN EUROPE

Case summary

Geography Europe-wide

IPR Issues IPR issues were not faced directly by the project, which acted to facilitate
the release of software developed by public administrations under open
source licenses. However, the project also acts as a competence centre,
publishing studies directly addressing IPR issues that stakeholders might
face – choosing licences, copyright issues, interaction between open
source and patents, etc.

Stakeholder
incentives

The project was funded by the European Commission, with the aim of
increasing software sharing among public authorities and across the
public sector in general. Incentives for other key stakeholders were:
gaining recognition for local initiatives and access to peers in other
administrations (for administrations contributing and participating in
project activities, including sharing their software on the OSOR portal);
single-point access to a public sector software sharing community (for
open source developer community, civil society and industry
stakeholders)

Sustainability Operational sustainability for keeping the OSOR.eu portal going is
relatively low in terms of physical infrastructure costs. Much of the
content and all hosted software is provided by the (mostly public sector)
software rightsholders. During the initially funded period, a knowledge

49

 “What Is Public Software”, available online at: http://public-software.in/Public-software

WIPO/CR/WK/GE/11/3
page 38

base of answers to IPR and other issues was built up and is maintained
by the community of participants, who also contribute to news updates,
the most visible part of the portal.

Impact OSOR.eu has acted as a major catalyst in coordinating open source
initiatives in Europe and is one reason for Europe's global preponderance
in this area (see the table of regional distribution of initiatives in the
previous chapter). It is now the world's biggest single source of news
updates and case studies on public sector open source software, and its
software portal is similar to several others worldwide.

Transferability Several efforts worldwide have implemented the model of a hosted
community of public sector open source software, though not necessarily
as broad in scope as OSOR.eu which had a big focus on facilitating
cooperation across different countries and building a knowledge-base, in
addition to cataloguing software and catalyzing its release under open
source licenses. Softwarepublico.gov.br is an example of a parallel
initiative in Brazil.

Public policy
implications

Building or supporting initiatives that aggregate and disseminate
information about open source software use can increase software
development and increase sharing of software and reducing costs in the
public sector

Following on the successful Open Source Observatory initiative in 2003-2005, which
published regular news reports and case studies on open source software use, deployment,
and development in public administration in Europe, the Open Source Observatory and
Repository (OSOR) was initiated in late 2006. It was designed as a pan-European
collaborative environment to federate public sector Open Source developments. It was
designed to include a Repository – a site where software packages and information about
software can be hosted, providing a “home” for software that has been released under open
source licences and therefore may be legitimately acquired from sources unconnected to the
rightsholders).

The point of OSOR was to encourage the re-use of publicly-financed software through the
use of Free/Libre/Open Source Software (FLOSS) distribution and deployment, by becoming:

• A pan-European information platform on FLOSS: providing news, guidance, links,

contacts;
• A platform for uploading and downloading software produced by and for public

administrations;
• A platform/”forge”50 for cross-border collaboration providing technical, organizational,

and legal support.

Volunteer collaboration in producing free or open source software is nothing new, as the
movement was initiated in the eighties. Technical environments allowing doing so were also
developed early (SourceForge.net is the most famous, and has many derivative versions).

50

 A “forge” is an online web-based platform where software under an open source licence can be stored,
downloaded, maintained and modified, while keeping track of individual contributions and modifications
through sophisticated version control systems. The term “forge” comes from Sourceforge.net the first
widely-used such platform.

WIPO/CR/WK/GE/11/3
page 39

In the past few years, the EU recognized that this form of collaboration has extended to the
production of software by organizations – such as companies, and to a limited extent, public
administrations – and was no longer limited to individual volunteers. Indeed, organizations
may account for at least one third of open source software available today, possibly much
higher for some projects such as OpenOffice.org, Linux or Apache51.

Meanwhile, the public sector in Europe accounts for some 20% of the ICT market52. At the
same time, while about 29% of software investment in the EU is on in-house software
development (and a further 53% is on custom developed software)53, it is apparent that much
software spending in the public sector is duplicative in nature. Providing mechanisms for
pooling and sharing such software would reduce costs, increase efficiencies and increase
collaborative innovation in the public sector. In this context it is remarkable that over 10% of
local government authorities in the EU stated that they own software that could be released
under an FLOSS licence54.

From this, the European Commission saw a clear potential for a public service, such as the
OSOR, to enable the sharing and shared development of software by and for the public
sector in Europe. The OSOR aimed to not be only a platform for software development – a
forge – but to bring together an accompanying effort to provide service, support and
community-building synergies addressing the specific needs of the European Public sector.
Due to national, linguistic, cultural and legal barriers, only a small amount of transnational
collaboration has been undertaken in the field of software used by the public sector. The
OSOR as a public service would aim to change this.

The Open Source Observatory and Repository project could be perceived from different
points of view. From the European Commission's point of view, OSOR started as fully
funded project (IDABC - DG Digit 2006-2009) in contrast to the many research projects that
are initiated by various groups, e.g. through grant funding or other sources. OSOR faced
high expectations from the EU authorities and all stakeholders, as it was seen as the most
ambitious and significant support from the EC to develop an innovative knowledge society in
the specific domain of public sector software.

From the economic point of view, the OSOR aimed to reduce the duplication of effort that
comes from different public administrations developing software for the same tasks, in effect
re-inventing the wheel. This was seen as likely to save taxpayers' money in the long run,
making the OSOR a service that is not only in the public interest, but also provides a
substantial – if indirect – return on investment.

From a strategic or policy point of view, the OSOR project could be seen as a potential driver
for changing software development and distribution policies in both EU, national and local
public administration and for facilitating the implementation of “free/libre/open source”
ecosystems around software used and produced by the public sector.

51

 DG Enterprise, “Economic impact of open source software on innovation and the competitiveness of the
Information and Communication Technologies (ICT) sector in the EU”, January 2007

52
 According to an estimate by Dr Tech Kari Tilli, Director (telecommunications and electronics industries) of

Tekes published in March 2006 by the European Commission – see
http://europa.eu.int/information_society/research/vienna_process/vienna_documents/documents/k_tilli.pdf

53 See data from the FISTERA network cited in table 24, page 124 of R. A. Ghosh, “Study on the economic
impact of open source software on innovation and the competitiveness of the ICT sector in the EU” –
www.flossimpact.eu

54 DG INFSO, “Effect on the development of the information society of European public bodies making their
own software available as open source”, Published on http://www.publicsectoross.info/ (July 2007).

WIPO/CR/WK/GE/11/3
page 40

More concretely, from the end users' (or beneficiaries') point of view, the OSOR was to
provide a service dedicated to the common needs of specific public sector communities that
was not previously provided at a single location. It was therefore important to identify
concretely the target stakeholders and to focus on some specific groups or stakeholders that
could act as pilots or models for others:

• Existing open source repositories in EU Member States that might be interested in
forming a network (a repository function) and,

• FLOSS projects associated with public authorities interested in using the OSOR
service as exchange or development platform (a collaboration function).

The OSOR acted as a Competence Centre for the multiple emerging initiatives in Member
States (and inside the European institutions), by extending the work of the pre-existing Open
Source Observatory (OSO): providing regular news, events and newsletters, cases studies
and reports providing legal and strategic advice. This served to actively assist public bodies
about the use and collaborative development of FLOSS. Reports published covered topics
such as patents and public sector use of FLOSS; building links to between public
administrations and FLOSS developer communities; and the influential and widely cited
“Guideline on public procurement of Open Source Software”55. The OSOR also resulted in
the creation of the European Union Public Licence, an Open Source licence with legally valid
translations in all official EU languages and determined to be in full compliance with EU law.
This imprimatur made a big difference to public administrations – who are conservative, but
nevertheless may lack sufficient legal advice – in terms of reducing concerns about open
source software licensing.

A key innovation of the OSOR repository was the federated search – the ability to search for
software hosted on the OSOR directly, but also those hosted on repositories supported by
individual regions, Member States, or independent initiatives. Using the European
Commission's expertise and services for translation, this service allows users to search in
any EU language; keywords are translated into the languages of affiliated repositories;
software descriptions in search results are than re-translated and collected for the user. As
repositories are as much about community building as physically hosting software, the ability
to interact with and collate from other repositories was important – the OSOR did not intend
to replace other, more local initiatives, but to facilitate them and facilitate interactions across
them.

To this end, the OSOR includes a collaborative workspace to develop and share experience
and software where necessary: a Wiki-based collective memory, a “forge” to support
collaborative software development, mechanisms to put public administration in contact with
one another through OSOR user groups, forums for collaborative discussion, the facilitation
of specialized improvements and adaptations, software localization or certification, support
for the development of ecosystems around public sector software (such as technical support,
or other services).

The OSOR now has 80 published case studies and several hundreds of news items, several
times a week; over 200 software projects are hosted directly on the OSOR, with a further
2500 searchable through its federated repository system. The European Commission initially
planned the project as a 4-year trial, expecting that it would be self-sustaining. However, its
widespread impact and stakeholder demand has led to a decision to continue supporting it,

55

 Available online at http://www.osor.eu/idabc-studies/OSS-procurement-guideline%20-final.pdf

WIPO/CR/WK/GE/11/3
page 41

integrating it as a key part of the European Commission's ISA (Interoperability Solutions for
European Public Administrations) program.

5.6. SOFTWAREPUBLICO: BRAZILIAN GOVERNMENT SOFTWARE PORTAL

Case summary

Geography Brazil

IPR Issues IPR issues were not faced directly by the project, which acted to facilitate
the release of software developed by public administrations under open
source licenses.

Stakeholder
incentives

The project was funded by the Ministry of Planning, Budget and
Management, with the aim of increasing software sharing among public
authorities and across the public sector in general. Incentives for other
key stakeholders were: gaining recognition for local initiatives and access
to peers in other administrations (for administrations contributing and
participating in project activities, including sharing their software on the
OSOR portal); single-point access to a public sector software sharing
community (for open source developer community, civil society and
industry stakeholders)

Sustainability Operational sustainability for keeping the Softwarepublico.gov.br portal
going is relatively low in terms of physical infrastructure costs. Much of
the content and all hosted software is provided by the (mostly public
sector) software rightsholders. The Brazilian Ministry of Planning, Budget
and Management pays the costs of running the portal.

Impact Since its creation in 2007, the portal has grown to a community of 130 000
registered users, with software in solutions in different areas and multiple
awards for e-government and innovation.

Transferability Several efforts worldwide have implemented the model of a hosted
community of public sector open source software.

Public policy
implications

Building or supporting initiatives that aggregate and disseminate
information about open source software use can increase software
development and increase sharing of software and reducing costs in the
public sector

The Brazilian Public Software Portal is a space for providing IT solutions to the public sector

According to the Brazilian Ministry of Planning, Budget and Management56, “More than 5,500
municipalities spread across a continental region, limited resources, cultural diversity and a
need for integrated operations are some of the factors that have promoted the use of open
software in Brazilian public administration. In this scenario, and based on very successful
experiences in the use and licensing of open software, the Brazilian government created the
Portal do Software Público Brasileiro [Brazilian Public Software Portal] to systematize the
combination of resources and create a single source of solutions in open software for public
administration, especially at the municipal level”.

56

 This case description is drawn from correspondence between the author and officials of the Brazilian Ministry
of Planning, Budget and Management; as well as the Ministry’s publication on the Public Software Portal.

WIPO/CR/WK/GE/11/3
page 42

The Portal was created as a place to share software between government authorities, civil
society and the non-profit sector; software on the portal is all distributed under a reciprocal
FLOSS licence, the GPL, ensuring that it can be accessed, studied, modified and
redistributed and that all modifications remain accessible under the same terms.

In addition to providing access to specific software solutions, and allowing the upload of new
solutions and improvements in already existing software, the portal also receives
contributions from users and organizations in fields such as quality, professional training,
financial support, management and international communication. Similar to the OSOR.eu in
Europe, the Brazilian Public Software Portal goes beyond software to provide a community,
with resources such as articles, interviews, links and a guide to service providers that is
continuously growing.

The software is expected to be a finished solution that is ready to install and use, fully
documented, like any commercial off-the-shelf software. A set of basic user services is
provided by the Portal, including various interactive online forums for discussion, feedback
and support, a version control tool for modifying the software and tracking modifications, and
system documentation.

The community is supported by a technical team; management and control tools are defined
to establish the frequency of the release of new versions and provide quality control
parameters for on-going software development. The Portal also provides for a uniform
process of availability for any entity or individual that participates in the model, guaranteeing
the release of the software, the continuity of the project and the functioning of the ecosystem.

According to the Ministry, the software solutions, which can be adapted for use in any
country or organization, provide various benefits including:

• Rationalization of resources – the sharing of solutions reduces the replication

of development efforts;
• Immediate availability – the solutions, which are documented, can be

downloaded free of charge, through simple registration on the portal;
• Sharing of administrative experiences among municipalities, and analogously,

of technological knowledge and of rules of negotiation among the members of
the user communities created around the solutions;

• Creation of business opportunities for local IT companies, which are dedicated
to customization and improved solutions;

• Sharing of improvements – developments and corrections can be made
available on the portal;

• Choice of supplier – the user can opt for the service provider and for the
contracting model considered most suitable.

The Portal is seen by the Ministry as a success and a key part of Brazil’s public sector
software infrastructure. It was created in April 2007, starting with just one software
application hosted, and now offers dozens of solutions in various areas (education,
processing of geographic information, computing, administration and healthcare). It now has
more than 130 000 registered users.

6. CONCLUSIONS AND RECOMMENDATIONS FOR WIPO'S ROLE

This Study set out to investigate the use to which copyright law can be put to facilitate the
application of software development practices to economic, social and cultural development,

WIPO/CR/WK/GE/11/3
page 43

in developing countries and LDCs. To this end, the Study has examined the general
treatment of software in copyright law at the international level and national and regional
regimes. The primary conclusion from this initial exercise is that software has been treated
as primarily an industrial activity, rather than, say, a form of essential knowledge or
information to which access should be given some consideration. Unlike, say, for
educational materials, public information or even (with relation to patents) pharmaceuticals,
legislative and regulatory practices for software do not in general provide for exceptions or
limitations to rights provided.

General practices within copyright law, such as limitations and exceptions, do apply to
software too. They have had a limited impact on software development practices. The one
software-specific exception applied in copyright law is the “interoperability exception”,
incorporated in the EU Software Directive and related to Article 40 of TRIPS, which allows for
appropriate treatment of IPR licensing practices that may be considered anti-competitive.
Again, in practical terms, this has a limited impact on the software market in terms of
increasing access for the purposes of economic and social development.

One important reason for the lack of legislative or regulatory initiatives towards improving
access to software through copyright exceptions has been the development and success
over the past two decades of an alternative software development model that does not rely
primarily on the economic exploitation of exclusive rights over software. Free software, also
called libre software or open source software57, is a phenomenon that has grown from small
beginnings in the academic community in the 1980s to powering the majority of devices and
services people use to connect to Internet today. This study has shown how open source
software, while providing an alternative software development model and supporting a range
of business models for economic exploitation of software and related services, works within
current copyright regimes. Indeed, key features of popular open source software licenses
rely on copyright law for their functioning, and open source licenses have been enforced
through copyright law in the courts.

Open source software, while functioning within the traditional copyright regime, greatly
increases access to and the ability to participate in software development. As explained in
this study, it does this through an economic model and a licensing framework emphasizing
the sharing of information based on voluntary copyright licensing mechanisms chosen by
rights-holders, rather than through legislative actions around copyright law. Methods used by
governments to facilitate software development for economic development are, therefore,
typically been in terms of increasing demand, supply or broad access for open source
software. Demand-increasing measures, such as procurement policies that result in an
increase in the public use of open source software, have the result of making open source
software more economically sustainable for local businesses (and may increase the
efficiency of public spending on software). Supply-increasing measures include policies to
release software developed for or by the public sector under open source licenses;
measures to fund the development of open source software, either directly or through fiscal
(tax) treatment of contribution to open source software development. Broader access-
increasing measures include training programs that encourage entrepreneurial activity
around open source software; facilitation of information sharing among public sector, private
sector and community developers; educational access programs such as the use of open
source software in schools; ICT access programs, such as adaptations to local languages
through the use of open source software models.

57

 Free/Libre/Open Source Software is generally referred to in this document by the acronym FLOSS, a term used
in a number of studies and policy documents in Europe, Africa and Latin America.

WIPO/CR/WK/GE/11/3
page 44

Unusually, open source software is an access-increasing model that has until now been
more successful in wealthier countries, with adoption driven largely by business demand.
This is not surprising – with some exceptions, there is a high geographic correlation between
open source software developers and access to computers and the Internet58. Partly as a
result, a wealth of empirical evidence has been collected over the past few years on the
economics of open source software, and this Study has examined this material – albeit with a
particular focus on the development of local knowledge and skills, and local economic
development. Open source software has been shown to have a strong impact on access to
software and more importantly from the perspective of long term sustainable economic
development, access to skills development and participation in the software creation process.
A summary of policies and initiatives regarding open source software has been provided in
this Study, based on data from dozens of countries around the world. A more
comprehensive survey of official open source-related policies is cited in the bibliography, and
distributed as an annex to this report.

A few especially interesting cases going beyond policy – not necessarily initiated by
governments – have been examined in more detail. They show how open source models for
copyright have allowed public initiatives to rapidly develop, access and deploy software
systems with significant impact. Initiatives examined were sometimes originated by
government, but often originated by civil society or industry and later supported by public
organizations – underscoring the flexibility of open source licensing, which allows users and
developers to bypass the transaction costs and times typical of traditional copyright
exploitation models. The cases selected emphasize how the open source copyright model
can be used not only to increase access to software in developing countries (as passive
consumers) but how this model is suited for the creation of software innovations in
developing countries. Examples such as the use of Sahana (originated in Sri Lanka) in New
York or Ushahidi (originated in Kenya) in New Zealand show how the open source model
allows developing countries to actively participate and contribute value in the global software
development community, providing a flow of knowledge that may be surprising.

Policy strategies focus mainly on correcting current policies and practices that implicitly or
explicitly favour proprietary software. Some of these policy strategies were recommended
(and have since been followed in whole or in part) in the recommendations of the European
Commission report “Economic impact of open source software on innovation and the
competitiveness of the Information and Communication Technologies (ICT) sector in the EU”,
January 2007.

Recommendations are listed below with a primary focus on WIPO initiatives, and a
secondary focus on member states activities:

1. Avoid aggravating policy lag; increase awareness of open source as a source of
innovation in software. WIPO, like many member states, has in the past not paid
much positive attention to open source, although this has changed in the past few
years. The world's software industry is now, with few exceptions, run on open source
software. The global economy – the New York and London Stock Exchanges and
NASDAQ – run on open source software (Linux)59. Mobile computing, the fastest

58

 Note that in terms of open source usage, developing countries do not lag; indeed, if mobile computing is
included, open source software runs at the core of most smartphones and more advanced feature phones
whether in the form of Linux, Android (essentially Google's version of Linux) or even Apple's iPhone, which is build
like all modern Apple systems on the open source FreeBSD platform.
59

 See http://www.computerworlduk.com/news/networking/3244936/london-stock-exchange-smashes-world-
record-trade-speed-with-linux/

WIPO/CR/WK/GE/11/3
page 45

growing way for ICT distribution in developing countries, is also dominated by open
source software such as Linux and Google's Android60. It is important for policy
makers at all levels to recognise that open source licensing is an innovation and
licensing model that has been widely accepted by industry and provides a legitimate
way for broadening ICT access.

2. WIPO should include open source licensing and IPR issues in technical training.

Unlike many sectors of IPR, broadening access to software does not necessarily
depend on exceptions and limitations; open source software relies on copyright law
within the boundaries set by TRIPS. National PTOs and copyright offices often lack
awareness of the IPR issues involved with open source software; as it is an
important policy option, WIPO should ensure the provision of technical training to
increase knowledge and awareness among member states. Several resources for
this purpose have been created by member states themselves (especially within the
EU's OSOR project)

3. WIPO should specifically address open source in discussions on standards and IPR,

specifically Standards Policy and Patent Policy, where open source software may be
penalised. Recent publications and policy statements in the EU (specifically,
European Commission) are highly relevant for an appropriate approach

4. Encourage the study of fiscal policies, such as equitable tax treatment for open

source creators: open source software contributions should be treated as charitable
donations for tax purposes. Where this is already possible, spread awareness among
firms, contributors and authorities. (Primarily an issue for member states, although
perhaps also for WIPO – the ToR for this study specifically called for a discussion of
fiscal issues)

5. Avoid penalising open source in innovation and R&D incentives, public R&D funding

and public software procurement that is currently often anti-competitive and favours
specific proprietary brands to a far greater extent than most other sectors of
procurement (member states)

6. Avoid lifelong vendor lock-in in educational systems by teaching students skills, not

specific applications; encourage participation in open source-like communities
(member states)

7. GLOSSARY OF COMMON ACRONYMS

FLOSS: An acronym unifying the terms free software, libre software and open source
software, all of which refer to software that is distributed under the terms of the free software
definition or open source definition, which are equivalent. Free/Libre/Open Source Software,
and the acronym FLOSS, is used in a number of studies and policy documents in Europe,
Africa and Latin America.

GPL: GNU General Public License, the most commonly used copyright licence for
distributing FLOSS, used for GNU/Linux, Android, and several other FLOSS software
systems.

60

 Even Apple's iOS and Mac OS X run on an open source software operating system, with a proprietary
graphical user interface.

WIPO/CR/WK/GE/11/3
page 46

ICT: Information & Communication Technologies

IPR: Intellectual Property Rights, including Copyrights, Patents and Trademarks

NGO: Non-Governmental Organization, typically non-profit organizations

SMEs: Small or Medium Enterprises, businesses with a small or medium number of
employees and revenue.

[End of document]

